Modelling Urban Sensible Heat Flux at Multiple Spatial Scales: a Demonstration Using Multi-spectral Imagery and a Temperature-Emissivity Separation Approach

Weidong Xu, Martin Wooster, Sue Grimmond
Environmental Monitoring and Modelling Research Group
Dept. of Geography, King’s College London, UK.

Second Workshop on Earth Observation in Urban Planning and Management:
sub-theme Urban Heat Island/ Urban Climatology
The Hong Kong Polytechnic University, Hong Kong
Objective: Urban Energy Balance from Remote Sensing & Modelling

- Main emphasis is on spatial estimates of turbulent sensible heat flux (transfers heat from land surface to atmosphere)
- Using both airborne and spaceborne data (thermal/optical)
Methodology

Remotely Sensed Data Sources
- Airborne Operative Modular Imaging Spectrometer (OMIS)
- Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
 - One offers more precision and detail, the other more frequent observations.

Sensible Heat Flux Modelled Spatially
- Local-scale Urban Meteorological Parameterization Scheme (LUMPS)

Atmospheric Correction of RS Imagery
- MODTRAN v4 with atmospheric profile from radiosonde balloons

Surface Kinetic Temperature & Emissivity Determination
- Temperature-emissivity separation (TES) alg. (Gillespie et al., 1998) for ASTER
- Adapted for use with OMIS (different wavebands, more spectral channels)
Test Study Area : London, UK

ASTER Imagery London

- ASTER Spaceborne Data, London
 - 15 m spatial resolution VIS
 - 30 m spatial resolution SWIR
 - 90 m spatial resolution TIR

- Used to test and evaluate our own implementation of ASTER TES alg.
 - to retrieve surface kinetic temp
 - validate against in situ data

- After validation, TES then used on Shanghai OMIS data (more bands)

Measures reflected/emitted radiation at different λ, after passage through atmos. Use Temperature/Emissivity Separation (TES) alg. for surface kinetic temperature
Temperature/Emissivity (TES) Application

Figure 1. Basic design of the TES algorithm. The NEM module estimates normalized emissivities used to estimate reflected sky irradiance, which is removed iteratively, and then estimates the surface temperature \(T \). \(T \) is used in the RATIO module to calculate normalized emissivities, or \(\beta \) values, which measure spectral shape. The MMD module calculates the Min-Max \(\beta \) difference, from which the minimum emissivity \(\epsilon_{\text{min}} \) is found by empirical regression. The \(\beta \) spectrum is scaled by \(\epsilon_{\text{min}} \) to give the TES emissivities, from which the surface temperature is calculated. Accuracies and precisions are calculated from data characteristics and measures of TES performance. A more detailed flow diagram is given in Figure 4.
London TES Evaluation in Urban Areas

- ASTER imagery obtained at times of Thames water temperature 10 – 21°C
- Adjusted TOA radiances to surface leaving radiance (MODTRAN v4)
- Input into TES algorithm to calculate emissivity and kinetic temperature (T_k)
- T_k estimate compared to simultaneous measures of Thames water temp.

![7th April 2000](<14 18 22 >23)
![9th September 2004](<24 27 30 >31)

Surface Kinetic Temperature (°C)

TES-derived T_k vs in situ

- RMSE = 0.4 °C
- Bias = 0.1 °C

www.kcl.ac.uk
OMIS Developed by:
Shanghai Institute of Technical Physics (SITP, Chinese Academy of Sciences)

<table>
<thead>
<tr>
<th>Spectral range (µm)</th>
<th>Spectral Resolution (nm)</th>
<th>Number of Spectral Bands (Total :128)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.46 - 1.10 (VIS)</td>
<td>10</td>
<td>64</td>
</tr>
<tr>
<td>1.06 - 1.70 (NIR)</td>
<td>40</td>
<td>16</td>
</tr>
<tr>
<td>2.00 - 2.50 (SWIR)</td>
<td>15</td>
<td>32</td>
</tr>
<tr>
<td>3.00 - 5.00 (MIR)</td>
<td>250</td>
<td>8</td>
</tr>
<tr>
<td>8.00 - 12.50 (TIR)</td>
<td>500</td>
<td>8</td>
</tr>
</tbody>
</table>

- Detector types: Si, InGaAs, InSb and HgCdTe
- FOV: >70°
- Scan rate (Hz): 5-10-15-20 (selectable)
- Across track pixels no.: 512
- Signal quantization level: 12 bits

OMIS flown on helicopter to give 6 m pixels (overflight time 14:00 hrs)
Main Study Area: Shanghai, China

2 km x 2 km region of central Shanghai, neighboring the Huangpu River

- OMIS Airborne Data, Shanghai
 - 6 m spatial resolution
 - VIS-SWIR-MIR-TIR

- Used to parameterise LUMPS model

Met station provided air temp., wind speed, and relative humidity (and radiosonde)
Local-scale Urban Meteorological Parameterisation Scheme (LUMPS)

- Calculates partitioning of the net all wave radiation (Q^*):

$$Q^* + Q_F = Q_H + Q_E + \Delta Q_S$$

net all wave radiation + anthropogenic heat = sensible heat + latent heat + heat storage

- LUMPS dependence only on relatively easily identifiable surface characteristics.
- Believed to offer an acceptable level of accuracy (Offerle, 2003).
Shanghai Land Surface Cover Characterisation for LUMPS

OMIS Colour Composite

Empirical Line Method Calibration

Fractional Cover Determination

- **Shadow**
 - OMIS
 - Manual analysis → Mask

- **Water**
 - OMIS
 - Manual analysis → Mask

- **Vegetation**
 - OMIS
 - Aerial photograph (0.67 m)
 - OMIS sub-pixel classification (Small 2001)

- **Buildings**
 - Aerial Photograph
 - Digital Topographic Map

- **Other Impervious**
 - OMIS – (Veg + Roof)

www.kcl.ac.uk
OMIS-Derived Vegetation Fraction

OMIS-derived Vegetation Fraction vs High Spatial Resolution Aerial Photo

Vegetation Fraction
(Linear Mixture Modelling, Small (2001))
Vegetation Fraction
(OMIS/Linear Mixture Modelling, Small (2001))

Building Fraction
(1:2000 digital topographic map)
Survey Map-Derived Building Fraction

Vegetation Fraction
(OMIS/Linear Mixture Modelling, Small (2001))

Building Fraction
(1:2000 digital topographic map)

Remaining Fraction of Each 6 m Cell Classed as Other Impervious (Road, Pavement etc)
Shanghai Land Surface Cover Characterisation for LUMPS

OMIS Colour Composite

Empirical Line Method Calibration & Fractional Cover Classification

Landcover Classification

- **Red:** Roof
- **Purple:** Road
- **Green:** Veg
- **Blue:** River
- **Black:** Shadow

(dominant class threshold of 50%)

Fractional Cover Determination

- **Shadow**
 - 18%
 - **OMIS**
 - Manual analysis → Mask

- **Water**
 - 15%
 - **OMIS**
 - Manual analysis → Mask

- **Vegetation**
 - 8%
 - **OMIS**
 - Aerial photograph (0.67 m)
 - OMIS sub-pixel classification (Small 2001)

- **Buildings**
 - 32%
 - Aerial Photograph
 - Digital Topographic Map

- **Other Impervious**
 - 27%
 - OMIS – (Veg + Roof)
• Mean spectral emissivity difference (OMIS to Lib) is 0.005; max difference of 0.02

• Uncertainty of 0.1 in broadband emissivity corresponds to uncertainty of 45 Wm\(^{-2}\) in radiative heat flux 300 K (portion maybe compensated by reflected downwelling)
Summary of OMIS Data Processing & Input into LUMPS

- **8 Thermal IR bands**
 - Processed using 8 band TES implementation to:
 - Surface Kinetic Temperature
 - Surface Spectral Emissivity

- **112 Visible bands**
 - Processed to
 - Spectral Reflectance
 - Albedo & Veg Fraction
RESULTS: OMIS/LUMPS-Derived Fluxes (Net Radiation)

- Net radiation (Q^*) distribution similar for the three landcover types.
- Max difference (68 W m$^{-2}$) between pure veg and pure road 6 m pixels.
RESULTS: OMIS/LUMPS-Derived Fluxes (Storage Heat Flux)

• Pure rooftops characterised by lowest storage heat flux (mean ~ 15% Q^*)
• Pure roads/pavements have the largest storage heat flux (mean ~ 80% of Q^*)
RESULTS: OMIS/LUMPS-Derived Fluxes (Sensible Heat Flux)

- **Rooftops** characterised by highest sensible heat flux (mean ~ 60% Q^*)
- **Roads/pavements** have the lowest sensible heat flux (mean ~ 10% Q^*)
Influence of Spatial Scale on Q_H (Wm^{-2})

<table>
<thead>
<tr>
<th>Landcover (6 m)</th>
<th>Mixed Pixels (Q_H)</th>
<th>Pure Pixels (Q_H)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>sd</td>
</tr>
<tr>
<td>Roof Dominated</td>
<td>199</td>
<td>62</td>
</tr>
<tr>
<td>Road Dominated</td>
<td>69</td>
<td>30</td>
</tr>
<tr>
<td>Veg Dominated</td>
<td>104</td>
<td>43</td>
</tr>
<tr>
<td>All</td>
<td>130</td>
<td>81</td>
</tr>
</tbody>
</table>

- Spaceborne sensors have lower spatial detail (but more available data)
 - OMIS 6 m pixels
 - ETM+ 30 - 60 m pixels
 - ASTER 15 - 90 m

- Aggregate OMIS data to lower spatial resolution to determine influence
 - Method 1: resample Q_H results to 30 and 90 m resolution
 - Method 2: resample OMIS imagery to 30 and 90 m resolution prior to classification

- Calculate Q_H via LUMPS approach once more with degraded data – and compare Q_H (W/m^2) to original results obtained at 6 m
Influence of Spatial Scale (30 m)

<table>
<thead>
<tr>
<th>Q_H</th>
<th>Mean</th>
<th>sd</th>
<th>Mean</th>
<th>sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof</td>
<td>185</td>
<td>33</td>
<td>189</td>
<td>32</td>
</tr>
<tr>
<td>Road</td>
<td>83</td>
<td>28</td>
<td>85</td>
<td>28</td>
</tr>
<tr>
<td>Veg</td>
<td>87</td>
<td>21</td>
<td>97</td>
<td>21</td>
</tr>
<tr>
<td>All Pixels</td>
<td>157</td>
<td>56</td>
<td>160</td>
<td>55</td>
</tr>
</tbody>
</table>

← Meth1: Degrade Q_H output

Degradation to 30 m spatial scale.

← Meth2: Degrade LUMPS inputs

Can still identify many dominated class pixels
Influence of Spatial Scale (90 m)

Degradation to 90 m spatial scale.

- Meth1: Degrade Q_H output
- Meth2: Degrade LUMPS inputs

<table>
<thead>
<tr>
<th>Q_H</th>
<th>90m Method 1</th>
<th>90m Method 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>sd</td>
<td>Mean</td>
</tr>
<tr>
<td>All Pixels</td>
<td>123</td>
<td>33</td>
</tr>
</tbody>
</table>

Most pixels now fully mixed classes
Final Comments & Conclusions

- Thermal remote sensing imagery with a GIS-type database provides data to allow calculation of energy fluxes by LUMPS.
- Shanghai changes - land cover detail needs regular updates.
- Using of spaceborne imagery maybe a practical solution for heat flux determination in urban areas where high resolution airborne data is only infrequently available.
- Atm. & emissivity corrections seem ok - but still need 3D info.