
930 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 3, MARCH 2011

Improved Biomass Estimation Using the Texture
Parameters of Two High-Resolution Optical Sensors

Janet E. Nichol and Md. Latifur Rahman Sarker

Abstract—Accurate forest biomass estimation is essential for
greenhouse gas inventories, terrestrial carbon accounting, and
climate change modeling studies. Unfortunately, no universal and
transferable technique has been developed so far to quantify
biomass carbon sources and sinks over large areas because of
the environmental, topographic, and biophysical complexity of
forest ecosystems. Among the remote sensing techniques tested,
the use of multisensors and the spatial as well as the spectral
characteristics of the data have demonstrated a strong potential
for forest biomass estimation. However, the use of multisensor
data accompanied by spatial data processing has not been fully
investigated because of the unavailability of appropriate data sets
and the complexity of image processing techniques in combining
multisensor data with the analysis of the spatial characteris-
tics. This paper investigates the texture parameters of two high-
resolution (10 m) optical sensors (Advanced Visible and Near
Infrared Radiometer type 2 (AVNIR-2) and SPOT-5) in different
processing combinations for biomass estimation. Multiple regres-
sion models are developed between image parameters extracted
from the different stages of image processing and the biomass of
50 field plots, which was estimated using a newly developed
“allometric model” for the study region. The results demonstrate
a clear improvement in biomass estimation using the texture
parameters of a single sensor (r2 = 0.854 and rmse = 38.54)
compared to the best result obtained from simple spectral
reflectance (r2 = 0.494) and simple spectral band ratios
(r2 = 0.59). This was further improved to obtain a very promis-
ing result using the texture parameter of both sensors together
(r2 = 0.897 and rmse = 32.38), the texture parameters from
the principal component analysis of both sensors (r2 = 0.851
and rmse = 38.80), and the texture parameters from the av-
eraging of both sensors (r2 = 0.911 and rmse = 30.10). Im-
provement was also observed using the simple ratio of the texture
parameters of AVNIR-2 (r2 = 0.899 and rmse = 32.04) and
SPOT-5 (r2 = 0.916), and finally, the most promising result
(r2 = 0.939 and rmse = 24.77) was achieved using the ratios
of the texture parameters of both sensors together. This high level
of agreement between the field and image data derived from the
two novel techniques (i.e., combination/fusion of the multisensor
data and the ratio of the texture parameters) is a very significant
improvement over previous work where agreement not exceeding
r2 = 0.65 has been achieved using optical sensors. Furthermore,
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biomass estimates of up to 500 t/ha in our study area far exceed the
saturation levels observed in other studies using optical sensors.

Index Terms—Biomass estimation, multisensors, texture
measurement.

I. INTRODUCTION

THE RECENT United Nations Climate Conference in
Copenhagen, Denmark, in December 2009 once again

reminded us that climate change is one of the most severe
problems on Earth and that the atmospheric content of green-
house gas (particularly CO2), which has risen precipitously
in the last 250 years, particularly in the last 50 years [1],
is the main culprit. Forests can remove this CO2 from the
atmosphere in the process of photosynthesis and can store it
in their biomass, thereby lessening the greenhouse effect [2].
Thus, forest biomass is considered as an important part of
the global carbon cycle [3]–[5]. As a result, accurate forest
biomass estimation is required for many purposes including
greenhouse gas inventories, terrestrial carbon accounting, cli-
mate change modeling [6]–[11], and implementation of the
Kyoto Protocol of the United Nations Framework Conven-
tion on Climate Change. Unfortunately, this estimation is not
straightforward, and no universal and transferable technique
for quantifying carbon sources and sinks has been developed
so far [12], [13] because of the environmental, topographic,
and biophysical complexity of forest ecosystems, which dif-
fer in time and space. Besides traditional field-based meth-
ods, which are accurate but costly, time consuming, and
limited to small areas [14]–[19], remote sensing is the most
promising technique for estimating biomass at local, regional,
and global scales [20]–[26]. A number of studies has been
carried out using different types of sensors, including optical
[4], [5], [26]–[41], synthetic aperture radar (SAR) [42]–[53],
and lidar sensors [54]–[58], for biomass/forest parameter
estimation.

Apart from the use of a single sensor, combining information
from multiple sensors has yielded promising results for the
estimation of forest parameters/biomass [13], [18], [19], [59]–
[62]. A useful approach is to combine SAR and optical sensors
[60], [61], [63], [64], but many other options have been tested,
including different frequencies and polarizations [21], [65]–
[72], different sensors [10], [18], [19], [64], [73]–[78], and
multiple spatial resolutions [79], and improvements have been
obtained because different sensors often have complementary
characteristics in their interaction with land surfaces [61], [60].
From this broad range of approaches, widely varying degrees
of success have been obtained because of the complexity of
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biomass in time and space, the lack of comprehensive field data,
and the limitations in the spatial and spectral characteristics of
the satellite data.

Beyond the shortcomings of the data, processing techniques
may be the most important factor in biomass estimation as
previous research has shown that the simple reflectance of the
optical sensors [25], [26], [28], [31], [36], [80]–[82] and the
backscattering of the radar sensors [46], [68], [70], [72], [83],
[84] are unable to provide good estimations. Thus, processing
techniques need to be selected to complement suitable data
configurations.

Now that optical sensors with a wide range of spatial and
spectral resolutions are available, optical sensors are still an
attractive data source, even though previous research has shown
the difficulty of biomass estimation based on raw spectral
signatures because of the influence of increased canopy shad-
owing within large stands, the heterogeneity of vegetation stand
structures, and the spectral data saturation [5], [25], [26], [30],
[31], [38], [85]–[89]. However, vegetation indices, which have
the ability to minimize contributions from the soil background,
sun angle, sensor view angle, senesced vegetation, and the
atmosphere [90]–[95], are proven to be more successful [25],
[31], [37], [38], [85], [89], [96]–[98] but still with generally low
to moderate accuracies of up to ca. 65%. Moreover, these mod-
erate results have been obtained in temperate forests because
of their simple canopy structure and tree species composition.
In tropical and subtropical regions where biomass levels are
high, where the forest canopy is closed with multiple layering,
and where a great diversity of species is present ([21], [25],
[26], [31], [38], [85], [86], vegetation indices have shown less
potential, with low or insignificant results.

On the other hand, the spatial characteristics of images, such
as texture, have been able to identify objects or regions of inter-
est in an image [99], and image texture is particularly useful
in fine spatial resolution imagery [61]. Many of the texture
measures developed [99], [100]–[102] have shown potential
for improvements in land use/land cover mapping using both
optical and SAR images [103]–[114]. Image texture has also
proved to be capable of identifying different aspects of forest
stand structure, including age, density, and leaf area index ([53],
[115]–[119]) and has shown a potential for biomass estimation
with both optical [5], [38], [89] and SAR data ([42], [51], [120].
Moreover, although most previous biomass estimation projects
used Landsat TM data with a 30-m spatial resolution [60],
texture is expected to be more effective with finer spatial reso-
lution imagery since finer structural details can be distinguished
[51], [61], [110], [121]–[125]. Two potential drawbacks of the
implementation of texture measurement for biomass estimation
are the following: 1) texture is a very complex property and
can vary widely depending on the object of interest, the envi-
ronmental conditions, and the selection of window size [105],
[119], [126], [127], and 2) texture processing can generate a
lot of data which are difficult to manage [119], [127]. Thus,
although texture measurement holds potential for biomass es-
timation, it has not yet been fully investigated, and results so
far, when applying texture to optical images, have not exceeded
65% accuracy, even in structurally simple temperate and boreal
forests [5].

Considering the potential advantages of both image texture
and multisensor data, this paper investigates texture processing
for biomass estimation using data from two high-resolution
optical sensors ANVIR-2 and SPOT-5 along with raw spectral
processing and some simple band ratios. The project data were
selected by considering the following facts: 1) both sensors
have fine spatial resolution (10 m), and this higher spatial
resolution shows promise for image texture analysis; 2) the
sensors have some common spectral bands (green, red, and
NIR) which may help in reducing any random error in the
averaging process; and 3) the sensors have uncommon spectral
bands (blue in Advanced Visible and Near Infrared Radiometer
type 2 (AVNIR-2) and short-wave near infrared (SWNIR)
in SPOT-5) which may be able to provide complementary
information.

A. Objectives

The overall objective of the study is to explore the potential
of texture processing combined with multisensor capability for
the improvement of biomass estimation using data from two
high-resolution optical sensors. More specific objectives are to
investigate the performance of the following:

1) the spectral reflectance of the individual bands of the
sensors individually and together;

2) the simple ratio of the different bands of the sensors
individually and jointly;

3) the texture parameters of the sensors individually and
together;

4) the simple ratio of the texture parameters of the sensors
individually and together for the improvement of biomass
estimation.

II. STUDY AREA AND DATA

A. Study Area

The study area for this research is the Hong Kong Special
Administrative Region (Fig. 1) which lies on the southeast coast
of China, just south of the Tropic of Cancer. The total land
area of Hong Kong is 1100 km2, which includes 235 small
outlying islands. Although the population is over 7 million,
only about 15% of the territory is built-up, but less than 1%
is still actively cultivated. Approximately 40% of the total area
is designated as country parks, which are reserved for forest
succession under the management of the Agriculture, Fisheries
and Conservation Department. The native subtropical evergreen
broad leaf forest has been replaced by a complex patchwork of
regenerating secondary forest in various stages of development,
and plantations. Forest grades into woodland, shrubland, and
then grassland at higher elevations.

B. Data

Images from two optical sensors were used in this paper. One
image was obtained on October 24, 2007, by AVNIR-2 from
the ALOS-2 satellite launched in January 2006, and the other
was collected on December 31, 2006, by the High-Resolution
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Fig. 1. Study area and sample plots.

Geometric (HRG) sensor of the SPOT-5 Earth Observation
Satellite launched in May 2002 (Table I). The instantaneous
field of view of 10 m for the AVNIR-2 multispectral sensor
is the main improvement over the 16-m resolution AVNIR.
The SPOT-5 HRG multispectral data add an improved spatial
resolution (20 to 10 m) compared with the previous SPOT-4
platform as well as an additional shortwave infrared band at
10 m. With swath widths of 70 and 60 km, respectively, both
AVNIR-2 and SPOT-5 HRG are suitable for regional scale mon-
itoring and ideal for Hong Kong’s land area of ca. 40 × 60 km.

III. METHODOLOGY

The methodology (Fig. 2) of this paper comprises two parts,
namely, allometric model development for field biomass esti-
mation and processing of AVNIR-2 and SPOT-5 images.

A. Allometric Model Development

Due to the lack of an allometric model for converting the
trees measured in the field to actual biomass, it was necessary
to harvest, dry, and measure a representative sample of trees.
Since Hong Kong’s forests are very diverse, the harvesting
of a large sample was required. This was done by selecting
the dominant tree species comprising a total of 75 trees in
4 diameter at breast height (DBH) classes (less than 10, 10–15,
15–20, and 20 cm and above), and standard procedures were
followed for tree harvesting [14], [128], [129].

The harvested trees were separated into fractions, includ-
ing leaves, twigs, small branches, large branches, and stem.
After measuring the fresh weight (FW), representative sam-
ples (Fig. 3) from every part of the tree were taken for dry
weight (DW) measurement in an oven at 80 ◦C until a con-
stant DW was obtained (Fig. 3). The weight of every sample
was estimated using the same electric weight balance at a
0.002-g precision. The ratio of DW to FW was calculated for
every part of the samples using DW and FW of each part of

the tree. Using the ratio, DW was calculated for every part, and
finally, the DW of each tree was calculated by summing the DW
of all parts.

Regression models used by previous researchers [20], [128]
were tested in order to find the best fit by using DW as
the dependent variable and DBH and height as independent
variables in different combinations. Finally, using the log trans-
formed DBH and DW, the best fit model (Table II) was found,
considering all test parameters including the correlation coef-
ficient (r), the coefficient of determination (r2), the adjusted
coefficient of determination (adjusted r2), and the rmse. A fit
of approximately 93.2% (adjusted r2 of 0.932) and an rmse
of 13.50 were obtained for this best fit model (Table II). This
was deemed highly satisfactory in view of the great variety of
tree species, and is similar to the accuracies of several other
specialist forest inventories [20], [128].

B. Field Plot Measurement and Field Biomass Estimation

To build a relationship between image parameters and field
biomass, 50 sample plots covering a variety of tree stand
types were selected using purposive sampling. Circular plots
with a 15-m radius were determined by considering the image
resolution (approximately 10 m), the orthorectification error,
and the GPS positioning error. All sample plots were positioned
within a homogenous area of the forest and at least 15 m
distant from other features such as roads, water bodies, and
other infrastructure. A Leica GS5+ GPS was used to determine
the center of each plot using the Differential Global Positioning
System mode for accuracy within ±3 m. For a precise position,
a Position Dilution of Precision value below four was always
attempted. Both DBH and tree height were measured for all
trees within the circular plot region. The DBH of the trees
was measured at 1.3 m above the ground, and the heights of
the small and large trees were measured by Telescopic-5 and
DIST pro4, respectively. Trees with a DBH below 2.5 cm were
not included but were recorded. Finally, using the measured
parameter DBH, the biomass of each tree and the biomass of
all trees in a plot were estimated (Table III) using the allometric
model developed for this study area.

C. AVNIR-2 and SPOT-5 Data Preprocessing

The digital number values of the AVNIR-2 and SPOT-5 data
were converted to spectral radiance using the conversion factors
given in the image header files. Orthorectification was carried
out using the Satellite Orbital Math Model to compensate
distortions such as sensor geometry, satellite orbit and attitude
variations, Earth shape, rotation, and relief. In order to ensure
an rms error within 0.5 pixel, a high-resolution (10 m) digital
elevation model and well-distributed ground control points
were used for orthorectification.

D. Texture Analysis

Texture is a function of local variance in the image, which is
related to the spatial resolution and size of the dominant scene
objects [130], and it can be used to identify these objects or
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TABLE I
CHARACTERISTICS OF THE DATA USED FOR THIS PAPER

Fig. 2. Overall methodology.

regions of interest in any image [99], [131]. Studies have shown
that, in many cases, texture may be a more important source of
information than reflectance or intensity, and this is especially
true in high-resolution images (e.g., [61], [69], [112], [132],
and [133]). Thus, in forested landscapes, texture is dependent
on the size and spacing of tree crowns, and on high-resolution
images if a pixel falls on a tree, its neighbor may also fall on the
same tree, resulting in a low local variance. As the resolution
increases to a level that is comparable to the dominant tree
crown size, the local variance increases, and this should be

especially true in tropical forests with high species diversity,
where stands are heterogeneous [130].

Several methods and techniques for describing texture, based
on statistical models, have been developed [51], [112], [113],
[120]. For this paper, two categories of texture measurement
were selected to test their potential for biomass estimation with
AVNIR-2 and SPOT-5 data (Table IV). The first one is the
gray level co-occurrence matrix (GLCM) [99] along with some
gray level difference vector based texture measurements. The
second one is the sum and difference histogram proposed by the
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Fig. 3. Tree harvesting procedure for the allometric model development.

authors in [134] as an alternative to the usual co-occurrence ma-
trices used. Identifying suitable textures additionally involves
the selection of moving window sizes [38], [127]. A small
window size exaggerates the difference within the window
(local variance) but retains a high spatial resolution, while a
large window may not extract the texture information efficiently
due to over-smoothing of the textural variations. Because the
resolution of the data used is high (approximately 10 m) and
the forest structure in the study area is dense and compact,
all texture measurements were performed using four small to
medium window sizes from 3 × 3 to 9 × 9.

E. Statistical Analysis

To represent the relationship between field biomass and
remotely sensed data, some researchers have used linear re-
gression models with or without log transformation of the field
biomass data [28], [31], [34], [35], [65], [66], [83], while others
have used multiple regression with or without stepwise selec-
tion [18], [19], [26], [27], [37], [46], [69]–[71], [98]. Nonlinear
regression [45], [135], artificial neural networks [4], [25], [26],
[136]–[138], semiempirical models [48], and nonparametric es-
timation methods such as k-nearest neighbor and k-means clus-
tering have also been widely used [139]. Although no model
can perfectly express this complex relationship, researchers
are still using multiple regression models as one of the best
choices. In this paper, simple linear regression and stepwise
multiple-linear regression models were used to compare the
data derived from all processing steps with field biomass. The
biomass data were collected from 50 field plots and were used
as independent variables. The spectral reflectance of each field
plot was extracted using an area-of-interest mask of 3 × 3
pixels, for which the mean reflectance was calculated.

In multiple regression modeling, difficulties such as mul-
ticollinearity and overfitting may arise when a large number
of independent variables are used, such that the independent
variables are highly correlated with one another. To avoid
overfitting problems as well as to ensure finding the best fit
model, five common statistical parameters, namely, the corre-
lation coefficient (r), the coefficient of determination (r2), the
adjusted r2, the rmse, and the p-level (for the model), were

computed. Another seven statistical parameters such as the beta
coefficient (B), the standard error of B, the p-level, the toler-
ance (Tol = Tolerance = 1−R2

x), the variance inflation factor
(VIFj = 1/1−R2

j ), the eigen value (EV), and the condition
index (CI = kj = (λmax/λj), j = 1, 2, . . . , p) were calculated
to test the intercept fitness and multicollinearity effects. To
indicate multicollinearity problems, a tolerance value that is
less than 0.10 [140], a VIF value that is greater than 10 [19],
[140]–[142], an EV that is close to zero [142], [143], and a
condition index that is greater than 30 [140], [142], [143] were
used as determinants.

F. Processing of the AVNIR-2 and SPOT-5 Data for Modeling

The data of AVNIR-2 and SPOT-5 were processed in the
following three steps.

First Processing Step—Spectral Bands and Simple Band
Ratio: To test the potential of the spectral reflectance of all
bands of one sensor and both sensors together and the ratios,
the following bands and simple band ratios were used in the
model.

1) The spectral reflectance extracted from all four bands of
ANVIR-2 and SPOT-5 were used individually in a linear
regression model, and all bands of a single sensor were
used in a multiple regression model.

2) The spectral reflectance extracted from all bands of
ANVIR-2 and SPOT-5 and the principal component anal-
ysis (PCA) of all bands of both sensors were used to-
gether using a stepwise multiple regression model.

3) The spectral reflectance extracted from all six simple
spectral band ratios (1/2, 1/3, 1/4, 2/3, 2/4, and 3/4 ) of
both sensors was used individually in a simple regression
model. Multiple regression models were also used to test
all simple band ratios of each sensor together.

4) The spectral reflectance extracted from all simple band
ratios (1/2, 1/3, 1/4, 2/3, 2/4, and 3/4) of both sensors was
used together in stepwise multiple regression models.

Second Processing Step—Modeling of the Texture Parame-
ters: Fifteen types of texture measurements using four window
sizes (from 3 × 3 to 9 × 9) were used to generate the texture
parameters from four spectral bands (each of the AVNIR-2 and
SPOT-5 data). All texture-derived parameters were used in the
model in the following manner.

1) The texture parameters derived from each band of both
sensors and all texture parameters of a single sensor were
used in the stepwise multiple regression model.

2) The texture parameters derived from both sensors to-
gether were used in the multiple regression model.

3) The texture parameters derived from the PCA of both
sensors were used in the multiple regression model.

4) The texture parameters derived from the band averaging
of both sensors were used in the multiple regression
model.

Third Processing Step—Modeling the Simple Ratio of the
Texture Parameters: In this processing step, six types of ratios
(1/2, 1/3, 1/4, 2/3, 2/4, and 3/4) were performed using the
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TABLE II
BEST FIT ALLOMETRIC MODEL

TABLE III
DW (BIOMASS) DISTRIBUTION OF SELECTED FIELD PLOTS

texture parameters of both sensors, and modeling was per-
formed in the following ways.

1) The parameters derived from each texture parameter ratio
were used in the multiple regression model.

2) The parameters derived from all six simple texture band
ratios of an individual sensor were used in the multiple
regression model.

3) The parameters derived from all texture parameter ratios
of both sensors were used in the stepwise multiple regres-
sion model together.

IV. RESULTS AND ANALYSIS

The field data collected from 50 field plots showed a wide
range of biomass levels from 52 to 530 t/ha. The average of
ca. 150 t/ha biomass for our secondary forest study area is
more than twice the biomass levels for other reported tropical
secondary forests [86] and is representative of a wide variety
of successional stages and tree sizes in the study area. For
example, most forest is younger than 70 years old, with a
biomass below 200 t/ha. The fewer plots above this level
reflect the more restricted distribution of late successional stage
forest. In all modeling processes, the 50 field plots were used
as the dependent variable, and the parameters derived from
different processing steps (AVNIR-2 and/or SPOT-5) were used
as independent variables. The results of the three processing
steps are presented as three separate sections.

A. Performance of the Raw Bands and Simple Band Ratio

The best estimates of biomass using simple spectral bands
from AVNIR-2 and SPOT-5, as well as different combinations

of bands and PCA, produced only ca. 50% usable accuracy.
From the individual bands of both sensors, best result
(r2 = 0.494 for AVNIR-2 and r2 = 0.316 for SPOT-5)
was obtained from the NIR bands, and the lowest performance
(r2 = 0.002 for AVNIR-2 and r2 = 0.0345 for SPOT-5)
was obtained from the red bands [Fig. 4(a) and (b)]. The per-
formance of the model (r2) increased to 0.631 and 0.503 using
all bands of AVNIR-2 and SPOT-5, respectively. Combining
all bands of both sensors together was not able to produce a
better performance because of a strong intercorrelation among
bands. However, although multiband models appear to improve
biomass estimation accuracy, the problem is that these models
violate the assumption of uncorrelated independent variables
and show strong multicollinearity effects (a CI that is more
than 30) except for the PCA-based model which was only
able to define field biomass with an accuracy of approxi-
mately 50%.

The simple band ratios of both sensors (individually and
together) improved biomass estimation substantially [Fig. 5(a)
and (b)], with the highest r2 of 0.59 being derived from the
red/NIR ratio of AVNIR-2, compared to the highest perfor-
mance for SPOT-5 of r2 = 0.387 also from the red/NIR ratio.
This improvement may be explained by the fact that ratios
can enhance the vegetation signal while minimizing the solar
irradiance, soil background, and topographic effects [90], [92],
[93], [119], [144]–[152]. In addition to the assessment of single
band ratios, multiple regression models were developed using
all simple band ratios of AVNIR-2 and SPOT-5 for each sensor
individually and both together. The results [Fig. 5(c)] showed
a significant improvement in biomass estimation, with an r2 of
0.739 obtained from the combined use of simple ratios of both



936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 3, MARCH 2011

TABLE IV
FORMULAS OF THE TEXTURE MEASUREMENTS USED IN THIS PAPER

sensors. However, as with the raw spectral bands, very strong
multicollinearity effects were observed for all three models
[Fig. 5(c)] due to a strong correlation among the band ratios.

In summary, the attempts to estimate biomass using sim-
ple spectral bands of AVNIR-2 and SPOT-5 with different
combinations of band ratios and PCA produced only ca.

60% usable accuracy. The reasons for this can be explained
as follows.

1) The field biomass in this study area is very high (52–
530 t/ha).

2) Although the near-infrared reflectance from a single leaf
layer increases initially with increasing leaf cover, as
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Fig. 4. Accuracy of biomass estimation using raw data.

Fig. 5. Accuracy of biomass estimation using a simple ratio of raw data.

additional leaf layers are added to a canopy, these in-
creases are not sustained [153]. Concurrently, as the
canopy matures, creating more layers and increasing in
complexity, shadowing acts as a spectral trap for incom-
ing energy and reduces the amount of radiation returning
to the sensor [87], [154]. This is a normal situation in
tropical and subtropical forests with high biomass. A
lower accuracy was also found using simple spectral
bands in linear regression in many other studies [25],
[26], [28], [31], [36], [80]–[82].

3) Although we used 8 spectral bands and 12 simple band
ratios from the two sensors, almost all bands and ratios
were highly correlated, and as a result, the multiple re-
gression model was found to be unsuitable because of the
violation of the assumption of uncorrelated independent
variables [25]. Hence, we were unable to take advantage

of the potential synergies between the different sensors
for biomass estimation.

4) Ratios and vegetation indices have been shown to be
mainly useful in temperate and boreal forest regions
[5], [37], [88], [96], [155]–[158], where forests have a
relatively simple structure. In tropical and subtropical
regions, the forest structure is very complex, and the
relationship between the vegetation index and biomass is
asymptotic [25], [159], especially in tropical forests with
high biomass.

Considering the moderate accuracy obtained so far, this paper
decided to investigate further using the spatial characteristics
of the images, particularly texture, for biomass estimation.
Texture is an important variable, and it has already shown po-
tential for biomass estimation using optical data [5], [38], [89],
[115]–[118], [160].
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Fig. 6. Accuracy of biomass estimation using the texture parameters.

B. Performance of Texture Processing

A notable improvement was observed for both optical sen-
sors using the texture parameters (Fig. 6(a)–(c) and mod-
els 1–5 in Table V) compared to the raw data processing
[Fig. 4(a)–(c)] and simple ratios [Fig. 5(a)–(c)]. As with the
raw data processing, the best (r2 = 0.742 for ANVIR and
r2 = 0.769 for SPOT-5) and poorest (r2 = 0.309 for ANVIR
and r2 = 0.326 for SPOT-5) results for texture were obtained
from the texture parameters of the NIR and red bands, respec-
tively, although the performance was much higher for texture
measurement. Moreover, as with the raw data, the second
highest performances (r2 = 0.547 for ANVIR and r2 = 0.615
for SPOT-5) were also obtained from the green and SWIR
bands using the AVNIR-2 and SPOT-5 data, respectively. These
patterns of improvement were consistent for both sensors and
very much in agreement with the general behavior of the inter-
action between different wavelengths and vegetation. Thus, we
found that texture measurement enhanced biomass estimation
across all bands, but a greater improvement was observed from
the bands where reflectance from vegetation is higher.

Furthermore, the texture parameters from all bands together
(all bands of either AVNIR-2 or SPOT-5) were found to be very
useful, with r2 of 0.786 [rmse = 46.53 for AVNIR-2; model 1
in Table V and Fig. 6(c)] and 0.854 [rmse = 38.54 for SPOT-5;
model 2 in Table V and Fig. 6(c)], which were higher than any
previous processing steps. Apart from these improvements the
models (using all texture parameters of an individual sensor
together) were significant, and no multicollinearity effects were
evident (models 1 and 2 in Table V). Generally, the best results
were obtained using window sizes of 3 × 3 and 5 × 5, as well as
all window sizes (3 × 3 to 9 × 9) combined, and this is thought
to be due to the over-smoothing of the textural variations by the
larger window sizes as well as their dissimilarity to the 30-m
diameter field plots.

In addition to the single band texture parameters and all
texture parameters of an individual sensor together, three dif-

ferent approaches combining the texture parameters of both
sensors were used to estimate the biomass. These included all
texture parameters from both sensors together in the model,
all texture parameters of PCA of both sensors together, and
all texture parameters from the averaging of both sensors
together.

A very significant improvement was obtained from this
processing, although PCA was not found to be very effective.
The highest (r2 = 0.911 and rmse = 30.10) and the second
best (r2 = 0.897 and rmse = 32.38) results were obtained from
the texture parameters from the averaging of both sensors
[model 5 in Table V and Fig. 6(c)] and from the texture
parameters of both sensors in the model, respectively [model 4
in Table V and Fig. 6(c)]. These results were considerably better
considering r2, rmse, p-level (model and all variables), and
multicollinearity effects. The models were significant, and mul-
ticollinearity effects were not noted. The relationships between
the field biomass and the best five model predicted biomass,
comprising all texture parameters from AVNIR-2 [Fig. 7(a)],
SPOT-5 [Fig. 7(b)], both sensors together [Fig. 7(c)], PCA
of both sensors [Fig. 7(d)], and the average of both sensors
[Fig. 7(e)], also demonstrated very good agreements for model
fitting (Fig. 7), although the performance varies among these
models. The lowest rmse (30.10) was observed from the aver-
aged texture parameters of both sensors [model 5 in Table V
and Fig. 7(e)], while the highest rmse (46.53) was observed
from the model using all texture parameters of AVNIR-2 data
[model 1 in Table V and Fig. 7(a)]. These differences were
attributed to the fact that averaging is a type of data fusion,
and the synergy between the two sensors probably contributed
complementary information in the model [model 5 in Table V
and Fig. 7(e)].

The following observations arise from the results.

1) Biomass estimation was improved using the texture pa-
rameters of AVNIR-2 and SPOT-5, and this was very
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TABLE V
RESULTS OF BIOMASS ESTIMATION USING THE TEXTURE PARAMETERS

much expected, as previous studies using optical [5], [38]
and SAR data [42], [51], [53], [161] also observed better
biomass estimation using texture because of its ability to
reduce the complexity of the forest structure.

2) In this paper, we observed that texture measurement
improved biomass estimation for every single band, com-
pared to the spectral reflectance of that band, and this im-

provement was very much correlated with the magnitude
of the vegetation response to individual bands.

3) The texture parameters of a single band or all bands from
a sensor, or from both sensor can be used effectively
in multiple regression models because of the ability of
different texture algorithms and multiple window sizes
to produce uncorrelated texture parameters, which is
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Fig. 7. Relationships between the field biomass and the model-predicted biomass using different combinations of texture parameters.

essential in maintaining the assumption of uncorrelated
independent variables for the development of multiple
regression models. This was not observed in the case
of spectral reflectance because of the strong correlation
between the different bands [25].

4) As with the raw data, we observed that PCA was not
very effective because, even though most information is
present on the resulting compressed components, there
is some information loss, and because the standard PCA
procedure is unable to distinguish the input variables
that are useful for biomass estimation from those that
are not.

5) All texture parameters from both sensors together were
found to be very effective, and they obtained ca. 90%
agreement (r2 = 0.897) for biomass estimation probably
because of the fact that different sensors have the abil-
ity to provide at least some complementary information
which may provide uncorrelated independent variables in
the model. This type of complementary information has
normally been applied to the SAR data using the data of
different polarizations and frequencies [66], [84], [162]
and also in multisensor approaches where complementary

information was obtained from different sensors [18],
[19], [74].

6) The best estimate (r2 = 0.911 and rmse = 30.10) was
achieved from the averaged texture parameters of both
sensors (model 5 in Table V). Averaging is a basic data
fusion method, and the texture parameters of the averaged
images have never been used with optical sensors for
biomass estimation. Previous work with SAR data has
showed that the use of several different dates of SAR
by averaging or other means can provide more reliable
results than a single SAR image due to the reduction of
speckle noise and other random errors [46], [47], [163].
In general, the results suggest that this type of averaging
can be applied to optical images to reduce the rmse and
to improve the accuracy of biomass estimation.

Although the texture measurement of both sensors together,
either averaged (model 5 in Table V) or together in the model
(model 3 in Table V), was able to produce a robust model
for biomass estimation, this paper still decided to investigate
further. Given the fact that band ratios have the ability to reduce
many unwanted problems such as topographic, forest structural,
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Fig. 8. Accuracy of biomass estimation using the ratio of the texture parameters in different combinations.

atmospheric, soil background, and solar irradiance effects, the
simple band ratio of the texture parameters was examined.

C. Ratio of the Texture Parameters

The ratio of the texture parameters was found to be very
effective for biomass estimation compared to the best results
obtained from all previous steps (Fig. 9). The accuracies ob-
tained (Fig. 8) using all simple ratios of the texture param-
eters of AVNIR-2 (r2 = 0.899 and rmse = 32.04), SPOT-5
(r2 = 0.916 and rmse = 29.09), and both sensors together
(r2 = 0.939 and rmse = 24.77) were considerably higher than
the results obtained from all texture parameters of AVNIR-
2 (r2 = 0.786 and rmse = 46.53), SPOT-5 (r2 = 0.854 and
rmse = 38.54), and both sensors (r2 = 0.911 and rmse =
30.10) (Fig. 9). Similar to the texture models, no multicollinear-
ity effects were evident for the models (models 1, 2, and 3 in
Table VI) whether from a single sensor (either AVNIR-2 or
SPOT-5) or both sensors together. All three models were sig-
nificant, and fitted the field data very well (Fig. 10). However,
the best fit between the model-predicted biomass and the field
biomass was observed using the ratio of the texture parameters
of both sensors together (Fig. 10(c) and model 3 in Table VI).
The lowest rmse (24.77) and the highest r2 (0.939) of this
model (model 3 in Table VI) made it outstanding in perfor-
mance compared to the other models, with very strong potential
for biomass estimation.

This great improvement in biomass estimation can be ex-
plained by the fact that, at this stage, we used three image
processing techniques together as follows.

1) Texture processing which had already shown a potential
for biomass estimation in many previous studies using
optical [5], [38] and SAR data [42], [51], [53], [161].
This paper found (Section IV-B) that texture processing
can greatly enhance the accuracy of biomass estimation

Fig. 9. Change in the accuracy of the biomass estimation among raw, simple
band ratios, image textures, and ratios of the image texture.

compared to the spectral reflectance and the simple ratio
of the spectral reflectance.

2) Data sets from two different sensors (AVNIR-2 and
SPOT-5) were used in this processing. Although both
data sets are from optical sensors, there are differ-
ences in the wavebands. Therefore, it was anticipated
that at least some complementary information could
be obtained. The use of different sensors (e.g., optical
and SAR; optical, SAR, and lidar; high-resolution optical
with low-resolution optical; panchromatic and multispec-
tral optical; different polarizations of SAR; and different
frequencies of SAR) are already proven to be effective for
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TABLE VI
RESULTS OF THE BIOMASS ESTIMATION USING THE RATIO OF THE TEXTURE PARAMETERS

biomass estimation because it provides complementary
information [18], [19], [46], [47], [74], [163]

3) Finally, we tested the ratio of the texture parameters.
We know from previous research that ratios, whether
simple or complex and whether between different bands,
polarizations, or frequencies, can improve biomass
estimation by minimizing the features which are similar
in both bands, such as topographic and forest structural
effects. This ratio effect has been shown using both
optical [90]–[93]; [119]; [146]–[152] and SAR data
[21], [66], [69], [71], [72], [164]. Thus, we found
(Section IV-B) as with previous research using optical
[5], [38] and SAR data [42], [51], [53], [161], that
texture parameters have the ability to improve biomass
estimation, and it is reasonable to believe that the ratio of
the texture parameters would be able to further improve
biomass estimation because of the combination of two
well-proven image processing techniques.

V. DISCUSSION

A very promising accuracy (r2 = 0.939 and rmse = 24.77)
for biomass estimation was achieved from the combined pro-
cessing of texture, ratio, and complementary sensor information
from two optical sensors (AVNIR-2 and SPOT-5). Using the
raw data, only moderate performance (r2 = 0.494) was ob-
served from the spectral reflectance of NIR of the AVNIR-2
data. This was expected as the biomass of this study area is
very high, and in tropical and subtropical regions, reflectance
is not linearly related to biomass because of the complex
canopy layers and heterogeneous vegetation structures [87],
[154]. A somewhat better result (r2 = 0.631) was obtained
from the simple ratio of the red/NIR data compared to the
raw spectral reflectance. The still only moderate performance
obtained from the ratio was in agreement with the findings
of previous research [5], [37], [88], [96], [155]–[158], which
found that ratios or vegetation indices, whether complex or
simple, are mainly useful in temperate and boreal forests with
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Fig. 10. Relationships between the field biomass and the model-predicted biomass using different combinations of the image texture ratios.

a relatively simple structure. In tropical and subtropical forest,
ratios and vegetation indices have not been found very effective
because of the complex forest structure [25], [38], [159]. Al-
though a better result was obtained from the combinations of all
raw bands together (r2 = 0.63) and all simple ratios together
(r2 = 0.739), very strong multicollinearity effects were evident
because of the high correlation among different bands and
among different band ratios.

Biomass estimation was observed to improve considerably
when texture parameters were used in the model. This im-
provement was noted for all stages of processing, including
single bands, all bands of a single sensor together, and all
bands of both sensors together. Promising results were obtained
from all texture parameters of AVNIR-2 (r2 = 0.786) and
SPOT-5 (r2 = 0.854), and this was further improved when the
texture parameters of both sensors were used in the model
(r2 = 0.911). The improvement of biomass estimation using
texture parameters was very much anticipated, and our results
comply with other findings of higher accuracy using texture
measurements of optical [5], [38] and SAR data [42], [51], [53],
[161], compared to raw spectral reflectance or backscattering.
The highest agreement (r2 = 0.911) obtained from the texture
parameters of both sensors averaged is significantly higher than
any previous study and is very promising for future work. We
believe that this good result was obtained mainly because of
the relatively high resolution of both sensors, as texture is more
applicable to fine spatial resolution imagery [51], [61], [110],
[121]–[125], as well as the complementary information from
the two sensors in the averaging procedure [46], [47], [163].

After three stages of processing, three very promising accu-
racies were obtained. These were the ratio of the texture pa-
rameters of AVNIR-2 (r2 = 0.899 and rmse = 32.04), the ratio
of the texture parameters of SPOT-5 (r2 = 0.916 and rmse =
29.09), and the ratio of the texture parameters of both sensors
together (r2 = 0.939 and rmse = 24.77). The accuracies of all
three models were very promising, but the performance using
the ratio of the texture parameters of both sensors together
superseded all other models. The accuracies obtained in this

paper are very high, and result from the high-quality data (from
two high-resolution optical sensors) and advanced processing
techniques (averaging of two sensors, texture measurement and
ratio), making us believe that this accuracy is reasonable and
useful for biomass estimation in future studies and in other
areas. Assuming correct image preprocessing [26], [73] and
good field data, similar results should be obtainable in other
study areas using similar steps to those described here. How-
ever, the precise selection of processing steps such as the ideal
window sizes and texture measurements, such as GLCM-based
or SADH-based, would require investigation as they depend
on the biomass level, forest structure, and other environmental
conditions of the study area. We suggest that the processing
models presented here can be used as templates for future
work.

VI. CONCLUSION

Although the potential of texture for biomass estimation with
optical sensors has previously been demonstrated, only low to
moderate agreements of below r2 = 0.65 have been achieved.
The very high agreements obtained between field and model
biomass from the texture parameters of both SPOT-5 and
AVNIR-2 sensors together, as well as for the ratio of the texture
parameters, were achieved in spite of the challenging nature
of the study area in a complex subtropical forested region.
This very promising result is surprising to the researchers,
but one possible explanation would be the comprehensive and
study-area-specific nature of the field biomass data and the
demonstrated good fit of the allometric model (i.e., r2 of 0.93)
devised for this paper from the destructive sampling of 75 trees.
The accuracy of locating the field biomass plots was also
ensured by their large size (15-m radius), compared with an
image resolution of 10 m, as well as by the detailed knowledge
of the study area by the researchers.

Along with the high-quality field data, a combination of im-
age processing techniques was devised to exploit both the spec-
tral and spatial characteristics of two advanced fine-resolution
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optical sensors. In particular, the high (10 m) image resolutions
of SPOT-5 and AVNIR-2, compared to the 30-m resolution
of Landsat used in most previous biomass estimations, has
enabled measurement of local variance in the forest structure,
with crown sizes similar to the image resolution. In such a
case, reflectance differences between individual trees and their
background, as well as between different tree species, are
maximized, resulting in a high local variance [130]. Apart from
the advantages of high resolution, texture measurement can
maximize the discrimination of spatial information indepen-
dently from tone and can increase the biomass range that can be
measured, as well as reduce those forest structural differences
which are independent of biomass, while the image ratios are
able to cancel out the background effects which register a
similar response in both bands, such as inequalities in solar
illumination, observation angle, and shadow. A further reduc-
tion of the unwanted background information may have been
achieved by the averaging of two sensors, which is an approach
that has proven successful in SAR images for the mitigation
of random error and sensor noise. Finally, the complementary
bands of SPOT-5 and AVNIR-2, namely, blue (AVNIR-2) and
SWIR (SPOT-5), were able to supplement the information from
the common green, red, and NIR bands, altogether resulting in
a very promising result for biomass estimation using two high-
resolution optical sensors.
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