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ABSTRACT ARTICLE HISTORY
This letter presents a novel framework for the analysis of difference Received 12 June 2015

image (D) in unsupervised change detection problems based on Accepted 1 October 2015
fuzzy topology. First, the DI is softly categorized into unchanged
and changed classes. In other words, a membership function is
computed for each class. Second, each class is decomposed into
three parts - interior, fuzzy boundary and exterior — by analysing its
membership function through fuzzy topology. Third, for each class,
its interior pixels which have a high membership degree are classi-
fied as the current class; its exterior, denoting the interior and fuzzy
boundary parts of the other class, is ignored; and its fuzzy boundary
pixels associated with a low membership degree are reclassified
using the supported connectivity in fuzzy topology. As a result, the
proposed approach can solve the problem of misclassifying pixels
in the fuzzy boundary of unchanged or changed class to some
extent, providing improved change detection accuracy.
Experiments were conducted on two different datasets and the
results confirm the effectiveness of the proposed framework.

1. Introduction

In remote sensing, change detection is the process of identifying land cover changes using
multitemporal remote sensing images (Bruzzone and Bovolo 2013). In the past decades,
many change detection approaches have been imposed for different types of remotely
sensed data. The methods can be broadly categorized into either supervised or unsuper-
vised change detection. This paper focuses on the unsupervised change detection.

One of the most widely used types of unsupervised change detection methods is to
analyse the difference image (DI). Several techniques can be applied to discriminate
unchanged and changed pixels in the DI like histogram thresholding (Patra, Ghosh, and
Ghosh 2011; Bruzzone and Prieto 2000), active contour model (ACM) (Bazi et al. 2010),
dual-tree wavelet transform (Celik and Ma 2010), support vector machine (SVM) (Bovolo,
Bruzzone, and Marconcini 2008), fuzzy c-means (FCM) (Ghosh, Mishra, and Ghosh 2011),
etc. Thresholding is the most widely used and the simplest technique. Many known
methods can be used to determine the decision threshold like Otsu algorithm (Patra,
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Figure 1. The flowchart of the proposed FTCD framework.

Ghosh, and Ghosh 2011), Kapur algorithm (Patra, Ghosh, and Ghosh 2011) and expecta-
tion maximization (EM) algorithm (Bruzzone and Prieto 2000). In the existing threshold
methods, the DI is sharply divided by the selected threshold T into unchanged and
changed sets. However, this process is usually inappropriate to some extent because
the ranges of the pixel values of DI in the unchanged and changed classes often have
overlap around the threshold T (Ghosh, Mishra, and Ghosh 2011). Many pixels in the
uncertainty region around T are therefore often misclassified in the change detection map
(Bovolo, Bruzzone, and Marconcini 2008). To solve this problem, a possible method is to
employ the fuzzy topology theory (Chang 1968; Liu and Shi 2006). By taking advantage of
it, the considered uncertain region will be effectively identified and then reclassified.
This letter proposes a novel framework of the DI analysis based on fuzzy topology to
enhance the performance of change detection by further dealing with pixels in the
uncertain region around T (FTCD framework). As shown in Figure 1, first, the DI is softly
classified into unchanged and changed classes, by computing a membership function for
each class. Then, each class is decomposed into three parts - an interior, a fuzzy
boundary and an exterior - utilizing fuzzy topology. Finally, for the unchanged class, its
interior pixels are classified as the unchanged class; its exterior, denoting the interior and
the fuzzy boundary parts of the changed class, is ignored; and the pixels in its fuzzy
boundary (corresponding to the uncertain region) are reclassified using the supported
connectivity of fuzzy topology (Liu and Shi 2006), which mainly exploits spatial contex-
tual information. The same processing procedure is also executed on the changed class.
It is worth noting that different methods of estimating membership function can be
employed to the first step of the proposed FTCD framework, such as the Bayes theory,
the FCM and the SVM, and each will lead to a new type of change detection approach
belonging to the framework. Specially, the Bayes theory is used in this study.

2. Proposed change detection framework

Let X; and X, be two coregistered and radiometrically corrected remotely sensed images
with the same size of M x N acquired in the same ground area at different times. Then,
the DI denoted by Xp is generated by applying change vector analysis (CVA) technique
(Ghosh, Mishra, and Ghosh 2011) to X; and X,.
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2.1. Softly classify the DI

The first step of the proposed FTCD framework aims at softly classifying the DI into two
opposite fuzzy classes: unchanged (w,;) and changed (w,). This is accomplished by
calculating a membership function for each class. In this study, the Bayes theory,
which has been proved to be effective in change detection on multispectral images
(Bruzzone and Prieto 2000), is adopted to calculate the membership functions in the
proposed framework. Let P, be the membership function of the class w; (I = 1, 2), which
behaves as a probability, that is Py, (Xp(i,j)) + Pw,(Xo(i,j)) = 1 for every pixel Xp(i,j) in
Xp. Here (i,j) denotes the coordinate of the pixel Xp(i,)).

To compute P, based on the Bayes theory, the main problems to be solved are the
estimations of both the probability density function p(Xp/w;) and priori probability
P(w) of the class w;, where | = 1, 2. Then the membership degree (posterior probability)
of w, (I = 1, 2) for a given pixel Xp(i,j) in Xp can be derived from

P(w)p(Xo(irj)/wi)
P(w1)p(Xo(i,j)/wi) + P(W2)p(Xo (i, ]) /wa)

Pu (Xo(1,])) = m

In this work, we suppose that both p(Xp/w;) and p(Xp/w,) can be modelled by
Gaussian distributions, whose reasonableness has been explained in Bovolo, Bruzzone,
and Marconcini (2008) and Bruzzone and Prieto (2000). In this context, the probability
density function p(Xp/w;) can be described by the mean y; and the variance o7 of the
class w, I =1, 2. To compute the membership functions P,, and P,,, the value of a set of
six parameters 6 = {u,, 01, P(w1), Uy, 02, P(Ww>)} must be estimated first.

With the FTCD framework based on Bayesian membership function, the uncertain
problem of threshold algorithms can be solved and the performance of thresholding
techniques is then improved. To compare the improvements on different methods, this
study proposes two FTCD methods, namely fuzzy topology integrated EM (FT-EM) and
fuzzy topology integrated Kapur (FT-Kapur). In FT-EM, the parameter set 0 is estimated
using EM as shown in Bruzzone and Prieto (2000). In FT-Kapur, Xp is classified into w; and
w, with Kapur first, and then the value of parameter set 6 is calculated from w; and w,.

2.2, Decompose DI with fuzzy topology

2.2.1. Fuzzy topology theory

Fuzzy set, fuzzy topology and fuzzy topological space are the three key concepts that
form the theoretical basis of the proposed framework. Fuzzy set is an extension of
ordinary set. Let Q be a nonempty universal set, and / = [0, 1], according to Chang (1968)
and Liu and Shi (2006), a fuzzy set A (Figure 2(a)) in Q is a mapping p,(x) : Q — I u,(x) is
called the membership function of A with 0 < p,(x) < 1 for all x in Q. A family of fuzzy
sets & is called a fuzzy topology for Q, and the pair (Q, ) is a fuzzy topological space if 6
satisfies the following conditions (Chang 1968):

(i) The empty set ¢ and the whole set Q belong to 6.
(i) If A and B belong to 6, then ANB € é.
(iii) Let {Ax : k € J} C 6, where J is an index set, then Uy, Ag € 6.
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Figure 2. (a) Definition of fuzzy set A in real number, (b) interior of fuzzy set A (A,), and (c) variation
in density in a fuzzy set.

where N and U represent the intersection operation and union operation of the fuzzy
sets, respectively.

Using fuzzy topology, a fuzzy set could be decomposed into three parts: interior, fuzzy
boundary and exterior. According to Liu and Luo (1997), every interior operator corre-
sponds to a fuzzy topology. Each interior operator can in turn be defined by a suitable level
cut. Let p,(x) be the membership function of a fuzzy set A, for a given positive value
a € (0,1), we can define an interior operator (denoted as In-operator) as follows:

(AW 00> a
A“(X>‘{o ifuax) < a, @

as shown in Figure 2(b). The In-operator could induce a fuzzy topology, which is used to
decompose the fuzzy sets (fuzzy classes) of DI in this work. As In-operator is a level cut
operator, the fuzzy topology is called level cut fuzzy topology (LCFT).

2.2.2. Decompose DI with LCFT
The main idea of the second step of the proposed technique is to decompose DI with
fuzzy topology. The membership functions of w; and w; classes have been computed in
Section 2.1. In this part, we use the LCFT to decompose the two fuzzy classes of no-
change and change, respectively. Each class is divided into three parts — interior, fuzzy
boundary and exterior — by analysing its membership function.

According to the difference of the membership values of the pixels in P, (/ =1, 2), the
fuzzy class w, can be partitioned into the following three parts: interior w,°, fuzzy
boundary ow; and exterior Xp — w;:

wi® = (Wp)g, = {Xo(i,J)IPw, (Xo(i,j))>ar}
ow; = {Xp(i,j)| 0.5 < Py, (Xo(i,))) < ai} - (3)
Xo —w = {Xo(i,))|Pw, (Xo(i,j)) < 0.5}

Here a; € (0.5,1) is a constant determined using the method provided in
Section 2.2.3. Given that Py, (Xo(i,f)) + Pw,(Xo(i,j)) = 1 and considering the partition
process, it is easy to show that Xp — w; = Ow, U w,°; that is the exterior of class w;,
represents the interior and fuzzy boundary parts of w, In addition,
Xo = w1° U dwy U (Xp — wy). Thus, the DI can be partitioned into three parts:

Xp = W1o U ow, U (8W2 U Wzo) = W]o U (8W1 U 8W2) U Wzo7 (4)
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where w;°, w,° and dw; U Ow, represent the interior of w;, interior of w, and fuzzy
boundary region between w; and w,, respectively.

The dividing process demonstrates that the pixels having a low membership degree
comprise the fuzzy boundary region dw; U Ow,. Therefore, the fuzzy boundary pixels are
often misclassified and must be reclassified.

2.2.3. Determine the optimal threshold q,

The key to identifying the fuzzy boundary region of the DI is to determine the optimal
threshold a; for w;, | = 1, 2. This study proposes an adaptive method to search the
optimal threshold a; (ASOT). Since g, € (0.5,1), it is reasonable to set the threshold
search range as (0.5,1) . Different searching paces can be applied to determine the
optimal a; and we propose setting it as 0.05. Given a pixel Xp(i,j), the higher the
membership degree of w,, the more likely it belongs to the interior of w,. In this study,
we suppose that the pixels with a membership degree larger than 0.99 will fall into the
interior part. Accordingly, we select the optimal a; from the potential set

C = {0.55,0.60, 0.65,0.70, 0.75,0.80, 0.85, 0.90, 0.95, 0.99}. (5)

Ten parts of w; can be obtained by Equation (5). The kth part (W/)k is defined as

(W) = {Xo(i.J)lckr < Py (X (0,1) < i}, (6)

where ¢, is the kth element of the set C and ¢, = 0.5. Then, let N denotes the set {n,},
where n, denotes the number of pixels in (w,)k, k=1,2,..,10.

As each part (w)* corresponds to equal range of membership grade (namely 0.05),
the number of pixels in (w)¥, that is n, could reflect the density of the part w)¥ . The
interior part of fuzzy class w, generally has a much greater density than the boundary
part (Figure 2(c)). If the values increase sharply from ny to nk,, then the densities
significantly increase from (w,)k to (w,)k+1 . Accordingly, we can expect that the parts
(w,)k and (w,)"+1 belong to the boundary and interior of w,, respectively. We then assign
¢ (the division of (W/)k and (W,)k”) to q;. That is, let a; = ¢.

As shown in Figure 3, in practice, if ny, ngq > 0 and ng,q = 2 X ng, we think the values
increase sharply from n, to ng.,. If there are more than one k meeting the above

Determine the
set Nandset k=1

Yes Mgy N1 > 0
Ngg1 > 20

<
A
o

Figure 3. The searching process of the optimal g, for the fuzzy class w;.
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conditions, we assign the minimum ¢, to a;. If the k that satisfies the conditions above
cannot be found, let a; = 0.99.

2.3. Reclassify the fuzzy boundary pixels

Fuzzy topology can be used to describe and study the structure of a neighbourhood and the
levelling of spaces (Liu, and Luo 1997). In Section 2.2, the fuzzy set w; (I = 1, 2) is divided by
LCFT into interior and fuzzy boundary. The fuzzy topological relation of w; is broken down
by the In-operator in this process. The interior pixels are labelled as w; and the boundary
pixels must be reclassified. Since most of the spatial objects are spatial connected, the
connectivity of spatial objects is important in spatial analysis. Also, the changes of spatial
objects are more likely to occur in connected regions rather than at disjoint points.

This work uses the supported connectivity (Liu and Shi 2006) in the fuzzy topology
to reclassify the pixels of fuzzy boundary, by which the fuzzy topology relation of class w,
(I =1, 2) are reconstructed. The details of this process are as follows: by searching the
eight-neighbourhood of each boundary pixel Xp(i,j) and by recording each of its
neighbour pixels, which belongs to the interior of a certain class (w, | = 1 or 2), this
boundary pixel is reclassified as the class already assigned to the large number of
neighbourhood pixels. If the number of pixels belonging to the interior of w, is equal
to that of w, within its eight-neighbourhood, this boundary pixel is reclassified as class
wy if Py, (Xo(i,f)) > Pw,(Xo(i,j)), and as class w, otherwise. Note that if some of the
boundary pixels are isolated from the interior pixels of both classes w; and w,, the
process will be similar with the seeded region growing (Adams and Bischof 1994).

3. Experimental results

Two experimental studies were conducted to assess the performance of the proposed
FTCD framework. Quantitative analysis of the change detection results were carried out in
terms of: (1) missed detection (MD), (2) false alarm (FA), (3) total error (TE), (4) Kappa
coefficient (k) and (5) measure of quality (QM) (Rutzinger, Rottensteiner, and Pfeifer 2009;
Bovolo, Bruzzone, and Marconcini 2008). The experiments were conducted with MATLAB
2012 on a computer that has Intel(R) Core(TM) i5-2400 3.1 GHz processor and 4 GB RAM.
Time consumption was recorded to compare the time complexity of different methods.

3.1. Dataset description

Two different real datasets were adopted in the experimental study. The first dataset is a
section (400 x 400 pixels) of two Landsat 7 ETM+ images acquired in August 2001 and
August 2002 in Liaoning province, China. The 2001 image was radiometrically corrected
through histogram matching method to the 2002 image. The second dataset, available
from the homepages (http://see.xidian.edu.cn/faculty/mggong/Projects/iCD.htm), is a
section (412 x 300 pixels) of two Landsat 5 TM images acquired in September 1995
and July 1996 on the Island of Sardinia, Italy. The histogram matching approach was
applied to the September image by referencing the July image for the relative radio-
metric correction. In addition, the dataset used in each experiment is acquired in the
same season. Thus, it is reasonable that phenological changes are negligible. Figure 4
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Figure 4. Difference images of (a) Liaoning data (the centre coordinate: 48°3'N, 126°8'E) and
(c) Sardinia data (the centre coordinate: 39°37'N, 9°13'E); and the ground reference maps of
(b) Liaoning data and (d) Sardinia data.

shows the corresponding DIs and the ground reference maps of change. The ground
reference map is manually generated according to a detailed visual analysis of both the
available multitemporal images and the DI.

3.2. Experimental results and discussion

To evaluate the effectiveness of the proposed FTCD framework, six change detection
methods were compared, namely Kittler (Patra, Ghosh, and Ghosh 2011), ACM (Bazi et al.
2010), EM, Kapur, FT-EM and FT-Kapur. Tables 1 and 2 show the quantitative change
detection results for the Liaoning data and the Sardinia data, respectively. Figures 5 and
6 depict the change detection maps and the partitioned results of the Dls. In the
partitioned results, black denotes the interior of w;, white the interior of w, and red
the fuzzy boundary region between w; and w..

Tables 1 and 2 show that the proposed FTCD approaches (FT-EM and FT-Kapur)
produce better change detection results than the corresponding standard methods
(EM and Kapur) in terms of total error, measure of quality and Kappa coefficient. As an
example, on Liaoning data, for FT-EM compared with EM, the total error decreases
from 11,032 to 8071, measure of quality increases from 0.7203 to 0.7752 and Kappa
values increase from 0.7943 to 0.8420. Experimental results indicate that the fuzzy

Table 1. Quantitative change detection results for the Liaoning data.

Methods used MD (n) FA (n) TE (n) QM (%) K Time (s)
Kittler 2125 7815 9940 0.7392 0.8112 24
ACM 7604 4151 11755 0.6588 0.7835 6.3
EM 1886 9146 11032 0.7203 0.7943 3.94
FT-EM 2467 5604 8071 0.7752 0.8420 4.50
Kapur 3050 4108 7158 0.7919 0.8527 0.41
FT-Kapur 3751 2637 6388 0.8060 0.8681 0.78

Table 2. Quantitative change detection results for the Sardinia data.

Methods used MD (n) FA (n) TE (n) QM (%) K Time (s)
Kittler 77 12747 12824 0.3705 0.4976 2.1
ACM 929 1767 2696 0.7130 0.8208 5.2
EM 385 8528 8913 0.4482 0.5844 3.03
FT-EM 420 5830 6250 0.5355 0.6719 3.32
Kapur 839 2233 3072 0.6884 0.8022 0.39

FT-Kapur 810 1810 2620 0.7223 0.8275 0.67
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Figure 5. Change detection maps obtained for Liaoning data using (a) Kittler, (b) EM, (d) FT-EM,
(e) ACM, (f) Kapur and (h) FT-Kapur; and the partitioned results used in (c) FT-EM and (g) FT-Kapur for
Liaoning DI (black is the interior of w;, white the interior of w, and red the fuzzy boundary region
between w; and w).

topology-based methods perform better than traditional thresholding techniques.
This is because the algorithms based on fuzzy topology can identify the fuzzy bound-
ary pixels that have a low membership grade; these pixels are then effectively reclas-
sified using the supported connectivity. The identified boundary pixels of each
experiment (marked as red in Figures 5 and 6) correspond to the patterns having
more uncertainty than other pixels. Thus, the effective reclassification process leads to
an improvement on the change detection results.

To evaluate the effect of the reclassifying process, the performances of the FTCD
method and standard method on the fuzzy boundary pixels were compared. Table 3 lists
the change detection results of the determined fuzzy boundary pixels, where FBN and
FBA are the number of the fuzzy boundary pixels and change detection accuracy,
respectively. As reported in Table 3, for both the experiments executed, the FT-EM
and FT-Kapur achieve comparatively higher change detection accuracies than the stan-
dard methods (i.e. EM and Kapur) in terms of the identified fuzzy boundary pixels. For
example, for the Liaoning dataset, 9944 boundary pixels were identified in the FT-EM,
and the accuracy of the determined boundary pixels of FT-EM is about 76.5%, which
represents an improvement about 30% from that of EM.

Tables 1 and 2 also show that FT-Kapur achieves better results than FT-EM. This is
because Kapur produces better change detection results than EM. However, FT-EM
produces a comparatively higher improvement on both Kappa coefficient and total
error than the FT-Kapur in comparison with the results of the corresponding standard
method for the same remotely sensed image, respectively. The reason for this is that the
change map yielded by EM contains much more white noise spots compared with that
of Kapur (Figures 5 and 6), and has more fuzzy boundary (uncertain) pixels to be further
processed (Table 3). Dealing with more uncertain pixels leads to the FT-EM gaining
higher improvement than FT-Kapur compared with the corresponding standard method.
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Figure 6. Change detection maps obtained for the Sardinia data using (a) Kittler, (b) EM, (d) FT-EM,
(e) ACM, (f) Kapur and (h) FT-Kapur; and the partitioned results used in (c) FT-EM and (g) FT-Kapur for
Sardinia DI (black is the interior of w;, white the interior of w, and red the fuzzy boundary region
between w; and w,).

Table 3. Change detection results on the fuzzy boundary pixels.

Liaoning data Sardinia data
Methods used FBN FBA (%) FBN FBA (%)
EM 46.72 53.95
FT-EM 9944 76.53 779 88.27
Kapur 56.74 70.61
FT-Kapur 5763 72.85 3232 84.56

For the Liaoning dataset, both the proposed FTCD methods FT-EM and FT-Kapur
perform better than Kittler and ACM. For Sardinia dataset, FT-Kapur produces the best
change detection results. However, the change detection accuracy of FT-EM is lower
than that of ACM, which is due to the bad change detection results of EM.

With regard to the computation time complexity, the proposed FTCD approach has
slightly higher computation time requirement than the corresponding standard one, but
Kapur and FT-Kapur are much faster than other methods. Experimental results indicate
that the proposed FTCD framework can address the problem of uncertain region of the
standard thresholding method (e.g. EM and Kapur) at a low cost of time complexity.

4. Conclusions

This study proposed a fuzzy topology-based framework for the analysis of the DI in
unsupervised change detection problems. In the framework, the Dl is first classified into
two categories: unchanged (w;) and changed (w,). It is then partitioned into three parts
— interior of w;, interior of w, and fuzzy boundary region between w; and w, - using
fuzzy topology. Finally, the fuzzy boundary pixels (having more uncertainty) are reclas-
sified based on the supported connectivity of fuzzy topology to enhance the perfor-
mance of change detection. In the theoretical aspect, the fuzzy topology is first
introduced into change detection problem, which contributes to the development of
the technique of analysing DI. In the methodological aspect, a novel change detection
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framework based on fuzzy topology is proposed; two threshold methods belonging to
the FTCD framework have been investigated. Two different experiments were carried
out and the results confirm the effectiveness of the given technique.
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