Workshop on Earth Observation for Urban planning and Management 20-21 May 2008

Relationship between surface and air temperatures over Hong Kong on a winter night

LAM Ka-Se¹, FUNG Wing-Yee¹ (Teresa), NICHOL Janet², WONG Man-Sing²

¹Department of Civil and Structural Engineering

²Department of Land Surveying and GeoInformatics

The Hong Kong Polytechnic University

Outline

Part I – Teresa

- Devise a method computing the air temperature from a thermal image (surface temperature)
- Apply this methodology over Hong Kong on a winter night

Part II – Janet

 Discuss Factors of Heat Island Distribution over Hong Kong

Introduction

 Remote sensing becomes a widely use method to study SUHI, but not for atmospheric UHI

■ Theoretically, air temperature depends on surface temperature (conversion, conduction) and wind (advection)

Methodology

Methodology (1)

In-situ measurement 25 paired temperature readings

Vehicle Transverse equipments

Mobile Air Temperature

IAQ Calc

thermistor

Methodology (2)

Temperature calculation

$$T_u = T_m + T_a$$

where T_u is the modified air temperature T_m is the measured air temperature T_a is the adjusted temperature

$$T_a = T_c + T_d$$

where T_c is the adjusted temperature due to calibration T_d is the adjusted temperature due to diurnal change in specific time

Temperature calibration

QA/QC – Temperature records

- 1. OMEGA CL750A calibrator, Ice Bath
- 2. Standard thermometer (NIST SRM 934)

Diurnal Adjustment

Source: King's Park, Hong Kong Observatory

Results

Correlation between Satellite Derived Surface temperature to In-situ surface temperature

Conversion of In-situ surface temperature to In-situ air temperature

Combining two conversions into one equation

- For all data (n = 25):
- SDA = 1.07* SDS 3.5 ---- Eqt (1)

- For urban locations (n = 14):
- SDA = 0.79* SDS + 2.6 ---- Eqt (2)

- For suburban locations (n = 11):
- SDA = 0.82* SDS + 0.3 ---- Eqt (3)

Application of UHI on winter night

Correlation between Mobile air temperature and Satellite derived air temperature

Conclusion

The first study in converting surface temperature to air temperature over Hong Kong on a winter night

The relationship between air and Surface temperatures in different land covers are required to improve the satellite derived air temperature

End of Part I

Spatial Enhancement

1. Radiance (**L**) to Brightness Temperature (**Tb**) using the Planck function with gain and offset coefficients from

image header

where
$$T = \frac{K2}{\ln\left(\frac{K1}{L_{\lambda}} + 1\right)}$$

$$T = \frac{K1}{L_{\lambda}} + \frac{1}{\ln\left(\frac{K1}{L_{\lambda}} + 1\right)}$$

$$T = \frac{1}{\ln\left(\frac{K1}{L_{\lambda}} +$$

2. <u>Emissivity Modulation</u> for **Tb** to Surface Temperature (**Ts**) using Stefan Bolzmann Law (emitted radiation from a Black Body (W.m2) is proportional to 4th power of absolute temperature)

Ts = Tb/
$$\varepsilon$$
 1/4

(Sabins, 1997)

Atmospheric correction

- low atmospheric column water vapour amount of 2.3cm
- low aerosol optical thickness (AOT) (<0.3 at 0.65µm)</p>
- limited range of surface temperatures between 287K and 294K
- Within this range, surface kinetic temperature is a linear function of brightness temperature
- Therefore, used in situ Sea Surface Temperature

Retrieval of Surface Temperatures: 10m indicates source areas and more accurate

a. b. c.

Comparison with 18 'in situ' data points a. 10m Ts image, R²=0.71, MAD=1degC b. air photo,

Image used for study

night-time ASTER scene of Hong Kong at 10.42pm on 31.01.07

■ △T(u-r) had reached 80% of its full development

Temporal development of the UHI at image time 31.01.07

Thick line, Kings park, Thin line Ta Kwu Ling

Wind speed at image time: 1m.sec

Temperature inversion at ca. 600m elevation

Objective

- Examine the usefulness of thermal satellite images for urban heat island (UHI) analysis
- Evaluate existing models of UHI formation
 - Population/physical structure/city size model (Oke, 1976)
 - Advection/city size model (Oke, 1976; Summers 1964)
- To what extent is UHI intensity (△T(u-r)) a function of physical structure, and to what extent is it dependent on distance from the rural boundary ie. urban areal extent?

Heat Island intensity: population/city size model (Oke)

Maximum heat island intensity versus population for tropical and temperate cities

Extreme signs of urbanisation in core areas

Sky view factor decreases

- Heat capacity of construction materials increases
- Thermal inertia of structures increases
- Density of anthropogenic heat emissions increases
- Amount of vegetation decreases etc

Mobile traverse covered urban areas of different size

Compared mobile air temperature directly with corresponding image pixels by overlay

Results: temperature range

- Mobile Ta range of 11-20°C whole of Hong Kong (UHI of 9°C)
- Kowloon urban area, only a 2°C range of **Ta**
- Kowloon urban area **Ts** 7-8°C range

Mobile traverse versus Ts

Results:spatial scales of SUHI

- Core of SUHI aligned N-S (medium-rise commercial districts)
- Regional scale transition clearly seen (similar to isothermal map)
- Micro-scale: steep temperature gradients correspond to surface land cover

SUHI over Kowloon showing north-south alignment of heat island core along Nathan Rd

Difference between 10m and 90m pixel size

SUHI at 10m shows both micro- and mesoscale temperature patterns

10m Surface temperature image

air photo

Results:relationship between Ts and Ta

- High correlation (R^2 =0.81) between **Ts Ta** at 18 points and also for whole mobile route (R^2 =0.80)
- High frequency Ts variation on mobile route correspond to image Ts details
- Lower frequency **Ts** variation on mobile route correspond to general (isothermal) image patterns and to patterns of **Ta**

Mobile traverse versus Ts

Mobile traverse (thick black line) showing lower temperatures alongside Kowloon Park and higher toward Mongkok. Graph has 4 colour classes of Ts which can be related to the image

Heat Island of Tsim Sha Tsiu on 31.01.07 at

Sky view factor: Langham Place at Portland St, Mongkok

Results

- Both **Ts** and **Ta** in Kowloon 4°C warmer than in Yuen Long, Shatin, Tai Po
- eg. lowest **Ta** in Kowloon 17.5°C, highest in Yuen Long, Shatin, Tai Po 16.3°C

Shatin/Tseung Kwan O

Yuen Long and Tuen Mun New Towns

Mountain range separates Kowloon from New territories Wind NNE

Presence of two layers over cities

□ Urban Canopy layer

□ Urban Boundary layer

Due to

- ☐ Mountain range of 500m
- □Inversion @600m
- □Low wind speeds
- ☐ Warm air trapped south of mountain range
- □UCL reinforced from both above and below

Source: Oke, 1976)

Conclusions

- Both **Ts** and **Ta** correspond to classic UHI situation (cliff and gradient)
- Different scales of variation between Ts and Ta eg. small green space lowers Ts but not Ta- is 10m too fine for UHI?
- 10m resolution indicates radiative entities within UCL, and is more accurate

Conclusions

- Temperature gradients in both Ts and Ta can be related to land cover transitions- little evidence of large scale advection (except ventilation corridors) (supports physical structure model)
- However, much higher Ts and Ta in Kowloon appears to support advection/city size model
- More attention to boundary layer conditions

References

- Nichol, J.E., (in press), An Emissivity Modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogrammetric Engineering and Remote Sensing.
- Oke, T.R. (1976), The distinction between canopy and boundary-layer heat islands. Atmosphere, 14, 268-277.
- Oke, T.R., (1982), The energetic basis of the urban heat island.
 Quarterly Journal of the Royal Meteorological Society, 108, 1-24.
- Oke, T.R., (1987), Boundary layer climates, New York, Methuen, 435p.

ASTER image of 4th August 2007

Recommendations

- Increasing the urban extent may somewhat increase the overall ∆T(u-r) but not by a simple increase of distance from periphery to centre
- Building at lower density to increase ventilation and SVF, even at expense of higher rise, may be effective