Measurements and Modeling of the Urban Heat Island Effect:

The role of anthropogenic emissions

Second Workshop on Earth Observation for Urban Planning and Management

Hong Kong Polytechnic University

David Sailor, Ph.D. sailor@pdx.edu

What is anthropogenic heating (Q_f) ?

- Heat generated from human activities.
- Typically largest in winter.
- Has diurnal, seasonal, and workday/non-workday profiles.
- Magnitude depends upon scale of interest*
 - City scale ~ 10's W/m²
 - Urban core ~ 100's W/m²
 - Downtown building scale ~ 1000's W/m²

Energy Use Leading to Anthropogenic Emissions

(U.S. Data)

(site energy based on annual US consumption totals exlcuding waste heat at power plants & other losses)

The Urban Energy Budget

Modeled impact of anthropogenic heating on near surface air temperatures of Philadelphia

- Anthropogenic heat based on citywide energy statistics.
- <u>City-wide</u> Q_f exceeded 60 W/m² in summer and 90 W/m² in winter
- Case 1: With Q_f
- Case 2: No Q_f
- Impacts on summer air temperature
 < 0.5 ° C during day
 ~ 1 ° C during night
- Impacts on winter air temperature
 ~ 1 ° C during day
 2 to 3 ° C during night
- Similar to results of Ichinose for Tokyo

Improving spatial resolution of anthropogenic heating

Top-down Approach for Q_f

- Gather energy consumption data within each sector
- Allocate based on dominant land-use within model grid cell
- Apply simplified diurnal profile functions

Sailor and Lu, 2004

Limitations:

- There is variability within land use categories
- Diurnal profiles not particularly accurate, especially for combustion fuels (NG)
- Moisture emissions not included
- Q_f is not really the same as energy use

Anthropogenic Heating ≠ Energy Consumption

In summer typically E ~ (Bldg. Energy Cons.)

Example from Houston TX, USA

From detailed building energy simulations...

... it is crucial to understand both the characteristics and distribution of building stock...

Bottom-up approach for the building sector

Building Prototype Definitions

GIS parcel data

Many cities have detailed GIS resources

Houston (COHGIS)

- 800,000 taxlots

- building type

Atmospheric Model

Grid Cell

Spatial variation in Q_f is important!

Anthropogenic sensible heating portion of UHI at 0600 local time for:

- (a) CityQf a single city-wide value of hourly Qf
- (b) LUQf anthropogenic heat based on dominant land use
- (c) ParcelQf anthropogenic heat based on bottom-up approach

Contour lines spaced every 0.25 °C.

Implications for Urban Planning and Management

- How shall we mitigate the urban heat island?
 - Urban vegetation & moisture
 - Urban albedo (solar reflectance)
 - Anthropogenic heating

...what is the relative contribution of modifiable urban characteristics to the development of the urban heat island?

Measurements of spatial variation in urban heat island

GIS & remote sensing resources for land use, albedo, vegetative cover, impervious surface, and anthropogenic heating

Result: A predictive model of the near-surface air temperature heat island

- UHI = f (land use)
- UHI = f (albedo, vegetation, anthropogenic heating ...)

Land use based model of summer daytime UHI in Portland, OR.

Conclusions

- Building energy consumption is not the same as waste heat emission
 - Building thermal load can be double the energy consumption
 - In urban core, much of the load is met through evaporative cooling
 - In areas with residential or smaller commercial buildings, however, the entire thermal load is sensible
- Vehicles and industry also contribute a significant amount of heat and moisture to the urban environment.
- Magnitude of total anthropogenic heating can rival the solar input. The resulting impacts on the urban heat island may be significant.
- To design effective urban heat island mitigation strategies, planners need to have quantitative information of the relative importance of modifiable urban characteristics.

Acknowledgements

National Science Foundation

 Dr. Melissa Hart, Alamelu Brooks, Hongli Fan, Shem Heiple, Lu Lu

