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Remote Sensing of Urban Heat Islands
• Remotely sensed imagery has been increasingly 

used to study UHIs by computing land surface 
temperatures from satellite images. 

• Remote sensing has the advantage of providing 
a time-synchronized dense grid of temperature 
data over a whole city.

• A key issue in the application of remote sensing 
technology is how to use surface temperature 
measurements at the micro-scale to characterize 
and quantify heat islands observed at the meso-
scale.  



Remote Sensing of Urban Heat Islands

• Another issue: How to deepen the 
understanding of the correspondence 
between the reception/loss of radiation of 
urban surfaces and the distribution of land 
use and land cover (LULC) characteristics.

• Third issue: How to develop and use 
quantitative surface descriptors, not LULC 
thematic data, to describe urban thermal 
landscapes (Voogt and Oke, 2003).



Research Objectives

• To investigate the relationship between land 
surface temperature (LST) and vegetation 
fraction;

• Determine the optimal scale to study the 
relationships between the patterns of 
landscape and LST; and

• To characterize and quantify urban heat islands 
by using LSTs.



Study Area – Indianapolis, USA



Data Used
• ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer) images
Oct. 3, 2000 (time: 17:00:51) - Fall;
June 16, 2001 (time: 16:55:29) - Summer;
Jan. 26, 2002 (time: 16:49:17) - Winter;
April 5, 2004 (time:16:46:39) - Spring.

• Landsat TM image of June 6, 1991, July 3, 1995, 
ETM+ image of June 22, 2000.

• MODIS images of 2006 (300 day and night 
images)

• High resolution aerial photographs: 1997 and 
2002 digital orthophotographs.



Relationship between LST and 
Green Vegetation Fraction

(I)

(Weng et al. 2004, Remote Sensing of Environment)



Spectral 
Mixture 

Analysis:
Fraction images 
computed from 
ETM+ reflective 

bands using 
LSMA (A: high 
albedo; B: low 
albedo, C: soil; 
and D: green 
vegetation)



A: Impervious 
surface estimation
based on 
combination of 
high-albedo and 
low-albedo 
fractions

B: Improvement of 
estimation by 
combined use of 
land surface 
temperature and 
the fraction images. 

RMSE = 9.22%

76 plots 
sampled 

(300m*300m)

(Lu and Weng, 
2006, Remote 

Sensing of 
Environment)



Land Surface 
Temperature (LST) 

of Indianapolis,     
April 5, 2004

Mean: 292.30K, 
Standard Dev. 3.27K



Methods
• Pixel measurements of spectral radiance and 

image texture for LST, GV, and NDVI (a widely 
used vegetation index) images.

• Pixel-by-pixel correlation analysis: between LST 
and NDVI vs. between LST and GV fraction.

• Calculate Fractal Dimension (a texture index) of 
LST, GV, and NDVI images, and examine how 
their textures are related.



Pixel 
Aggregation, 

30 m to 960 m



Correlation Coefficients between LST 
and GV fraction, and between LST and 

NDVI
Resolution 30 meters 60 meters 120 meters 240 meters 480 meters 960 meters

St/GV St/NDVI St/GV St/NDVI St/GV St/NDVI St/GV St/NDVI St/GV St/NDVI St/GV St/NDVI

Com. and 
Ind.

-0.6559 -0.6125 -0.6630 -0.6244 -0.6729 -0.6360 -0.6694 -0.6107 -0.5863 -0.5594 -0.5430 -0.5217

Residenti
al

-0.6763 -0.6663 -0.6897 -0.6812 -0.6909 -0.6845 -0.6875 -0.6365 -0.6003 -0.5619 -0.5862 -0.5449

Croplan
d

-0.7538 -0.7265 -0.7982 -0.7915 -0.8613 -0.8041 -0.8316 -0.7641 -0.7901 -0.7304 -0.7751 -0.6192

Grassla
nd

-0.3760 -0.3573 -0.4431 -0.4056 -0.4856 -0.4149 -0.4546 -0.3934 -0.4097 -0.3382 -0.3656 -0.2911

Pasture -0.4105 -0.3363 -0.4589 -0.4422 -0.4920 -0.4563 -0.4795 -0.4288 -0.4176 -0.3539 -0.3952 -0.3144

Forest -0.7343 -0.7156 -0.7919 -0.7330 -0.8333 -0.7751 -0.7509 -0.7137 -0.7087 -0.6468 -0.6556 -0.5772

Water -0.2416 -0.1972 -0.2601 -0.2587 -0.2719 -0.2707 -0.2219 -0.2178 -0.1935 -0.1887 -0.1130 -0.1027



Relationship of LST 
with NDVI and GV Fraction

• Negative correlations between LST and NDVI, 
and between LST and vegetation fraction, 
varying by LULC type.

• Correlation varies across the spatial scales: 
Increases as pixel size increases up to a 
resolution of 120 m, and then decreases with 
increasing pixel size.

• Vegetation fraction provides a slightly stronger 
correlation for all LULCs at all resolutions.  



Transects superimposed with LULC map

Transect Fractal Dimension (D) of LST, GV, and NDVI 
images at different resolutions were computed.



Variation of 
LST along the 
Transect #11 

(W to E) is 
displayed for 

different 
resolutions.



Fractal Analysis

• The complexity of LST, NDVI, and GV fraction 
images increases initially with pixel aggregation 
and peaks around 120 meters, but decreases 
with further aggregation.

• The spatial variability of texture in LST is 
positively correlated with those in NDVI and GV 
fraction.

• Strongest correlation in texture occurs at the 
resolution of 120 meters - the operational scale. 



Summary

• The areal measure of GV abundance 
provides a more direct correspondence 
with LST than NDVI. 

• NDVI measurements dependent upon the 
spectral width of visible and near infrared 
band in a particular sensor.



Optimal scale for examining the 
relationship between LULC and 

LST patterns 

(II)

Weng, Q. et al. 2007, Urban Ecosystems.

Liu, H. and Weng, Q. 2008 (forthcoming), Environmental Monitoring and 
Assessment.

Liu, H. and Weng, Q. 2009 (forthcoming), Photogrammetric Engineering & Remote 
Sensing.



Definition of Patch 
• The basic elements or 

units that make up a 
landscape.

• Landscape metrics:
– Mathematically 

characterize the spatial 
patterns of landscapes, 
and 

– Compare ecological 
quality across the 
landscapes.

– Examples: 
• Patch Percentage (PP)
• Shape Index (SI)



• Each data layer was re-sampled to the 
resolutions of 15, 30, 60, 90, 120, 250, 500, 
and 1000 meters.

• Landscape metrics were derived from each 
LULC and LST map in each season.

• Derivation of landscape metrics: including Patch 
Density (PD), Landscape Shape Index (LSI), 
Perimeter- area Fractal Dimension (PFD), Mean 
Perimeter-area Ratio (MPR), Proximity Index 
(PI), and Contagion Index (CI). 

Methods



Determination of Optimal Scale
• Each metric represented one dimension in the space.
• Optimal scale related to the operational scale of a 

phenomenon. 
• Optimal scale was determined based on the minimum 

distance in the landscape metric spaces. All indices were 
standardized to the values from 0 to 1 before calculation 
of Euclidean distances.

• At the optimal scale, the patterns of LULC and LST were 
most closely related:
– If the pixel size were too small, the effect of LULC pattern on 

LST could not be fully identified.

– If the pixel size were too large, the effect of various LULC types 
on LST would not be differentiated.     



Normalized Euclidean Distances between the 
LULC and LST maps across the spatial 

resolutions



Summary

• Ninety meter was found to be the optimal spatial 
scale for assessing the landscape-level 
relationship between LULC and LST.

• The landscape and LST patterns in the winter 
were unique, while the rest of three seasons had 
more agreeable landscape and LST patterns.

• Limitations: Subject to the quality of remote 
sensing data, acquisition time, processing 
methods, the sensitivity of individual landscape 
metric, and the study area. 



Modeling Urban Heat Islands by 
Using LSTs

(III)

Rajasekar, U. and Weng, Q. 2009 (expected). ISPRS Journal of Photogrammetry 
and Remote Sensing.



Objective
• To utilize micro-scale (pixel) 

measurements of LST to derive meso-
scale UHI parameters of the entire city 
(including: magnitude, the spatial extent, 
the orientation, and the central location).



A Gaussian model fitted to LSTs to derive UHI 
parameters (including magnitude, spatial extent, 
orientation, and the central location). Figure below 
illustrates the data fit in two-dimension.



3-D Models of Daytime UHIs



3-D Models of Nighttime UHIs



MODIS 
2006 Day 
Images



MODIS 
2006 Night 

Images



UHI as an Moving Object over the 
Space and Time



Day Mean: 2.28C (Std Dev: 1.22); Night Mean: 1.47C (Std Dev: 0.59)

UHI Magnitude Measurements Derived from MODIS Images



Summary

• The Gaussian model for characterizing 
UHIs with LSTs are effective.

• The relationship between LST and UHI 
may be further examined by using texture 
measurements.
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