

University of London

Modelling Urban Sensible Heat Flux at Multiple Spatial Scales: a Demonstration Using Multi-spectral Imagery and a Temperature-Emissivity Separation Approach

> Weidong Xu, Martin Wooster, Sue Grimmond Environmental Monitoring and Modelling Research Group Dept. of Geography, King's College London, UK.

Second Workshop on Earth Observation in Urban Planning and Management: sub-theme Urban Heat Island/ Urban Climatology The Hong Kong Polytechnic University, Hong Kong

Objective: Urban Energy Balance from Remote Sensing & Modelling

- Main emphasis is on spatial estimates of turbulent sensible heat flux (transfers heat from land surface to atmosphere)
- Using both airborne and spaceborne data (thermal/optical)

www.kcl.ac.uk

Methodology

Remotely Sensed Data Sources

- Airborne Operative Modular Imaging Spectrometer (OMIS)
- Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
 - One offers more precision and detail, the other more frequent observations.

Sensible Heat Flux Modelled Spatially

Local-scale Urban Meteorological Parameterization Scheme (LUMPS)

Atmospheric Correction of RS Imagery

MODTRAN v4 with atmospheric profile from radiosonde balloons

Surface Kinetic Temperature & Emissivity Determination

- Temperature-emissivity separation (TES) alg. (Gillespie et al., 1998) for ASTER
- Adapted for use with OMIS (different wavebands, more spectral channels)

Test Study Area : London, UK

ASTER Imagery London

• ASTER Spaceborne Data, London

15 m spatial resolution VIS
30 m spatial resolution SWIR
90 m spatial resolution TIR

• Used to test and evaluate our own implementation of ASTER TES alg.

- to retrieve surface kinetic temp
- validate against in situ data

• After validation, TES then used on Shanghai OMIS data (more bands)

Measures reflected/emitted radiation at different λ , after passage through atmos. Use Temperature/Emissivity Separation (TES) alg. for surface kinetic temperature

Temperature/Emissivity (TES) Application

Figure 1. Basic design of the TES algorithm. The NEM module estimates normalized emissivities used to estimate reflected sky irradiance, which is removed iteratively, and then estimates the surface temperature T. T is used in the RATIO module to calculate normalized emissivities, or β values, which measure spectral shape. The MMD module calculates the Min-Max β difference, from which the minimum emissivity ε_{min} is found by empirical regression. The β spectrum is scaled by ε_{min} to give the TES emissivities, from which the surface temperature is calculated. Accuracies and precisions are calculated from data characteristics and measures of TES performance. A more detailed flow diagram is given in Figure 4.

London TES Evaluation in Urban Areas

- ASTER imagery obtained at times of Thames water temperature 10 21° C
- Adjusted TOA radiances to surface leaving radiance (MODTRAN v4)
- Input into TES algorithm to calculate emissvity and kinetic temperature (T_k)
- T_k estimate compared to simultaneous measures of Thames water temp.

Surface Kinetic Temperature (°C)

OMIS Developed by:

Shanghai Institute of Technical Physics (SITP, Chinese Academy of Sciences

Spectral range	Spectral	Number of Spectral	
opectraliange			
(µm)	Resolution (nm)	Bands (Total :128)	
0.46 - 1.10 (VIS)	10	64	
1.06 - 1.70 (NIR)	40	16	
2.00 - 2.50 (SWIR)	15	32	
3.00 - 5.00 (MIR)	250	8	
8.00 - 12.50 (TIR)	500	8	
Detector types	Si, InGaAs,	InSb and HgCdTe	
FOV		>70°	
Scan rate (Hz)	5-10-15-20 (selectable)		
Across track pixels no.		512	
Signal quantization level		12 hits	
orginal quantization lover			

OMIS flown on helicopter to give 6 m pixels (overflight time 14:00 hrs)

Main Study Area: Shanghai, China

2 km x 2 km region of central Shanghai, neighboring the Huangpu River

- OMIS Airborne Data, Shanghai
 6 m spatial resolution
 VIS-SWIR-MIR-TIR
- Used to parameterise LUMPS model

Met station provided air temp., wind speed, and relative humidity (and radiosonde)

Local-scale Urban Meteorological Parameterisation Scheme (LUMPS)

• Calculates ppartitioning of the net all wave radiation (Q*):.

$$Q^* + Q_F = Q_H + Q_E + \Delta Q_S$$

net all wave radiation + anthropogenic heat = sensible heat + latent heat + heat storage

- LUMPS dependence only on relatively easily identifiable surface characteristics.
- Believed to offer an acceptable level of accuracy (Offerle, 2003).

Shanghai Land Surface Cover Characterisation for LUMPS

Fractional Cover Determination

www.kcl.ac.uk

OMIS-Derived Vegetation Fraction

OMIS-derived Vegetation Fraction vs High Spatial Resolution Aerial Photo

Vegetation Fraction (Linear Mixture Modelling, Small (2001)

Survey Map-Derived Building Fraction

Vegetation Fraction (OMIS/Linear Mixture Modelling, Small (2001)

Building Fraction (1:2000 digital topographic map)

Survey Map-Derived Building Fraction

Vegetation Fraction (OMIS/Linear Mixture Modelling, Small (2001)

0.0

1.0

Building Fraction (1:2000 digital topographic map)

Shanghai Land Surface Cover Characterisation for LUMPS

Empirical Line Method Calibration

& Fractional Cover Classification

Fractional Cover Determination

www.kcl.ac.uk

OMIS Surface Spectral Emissivity Evaluation

- Mean spectral emissivity difference (OMIS to Lib) is 0.005; max difference of 0.02
- Uncertainty of 0.1 in broadband emissivity corresponds to uncertainty of 45 Wm^{-2} in radiative heat flux 300 K (portion maybe compensated by reflected downwelling)

Summary of OMIS Data Processing & Input into LUMPS

8 Thermal IR bands

- Processed using 8 band TES implementation to:
 - Surface Kinetic Temperature
 - Surface Spectral Emissivity
- 112 Visible bands
 - Processed to
 - Spectral Reflectance
 - Albedo & Veg Fraction

RESULTS: OMIS/LUMPS-Derived Fluxes (Net Radiation)

Q* (Net Radiation)

• Net radiation (Q^*) distribution similar for the three landcover types

• Max difference (68 W m⁻²) between pure veg and pure road 6 m pixels

RESULTS: OMIS/LUMPS-Derived Fluxes (Storage Heat Flux)

• Pure rooftops characterised by lowest storage heat flux (mean ~ $15\% Q^*$)

• Pure roads/pavements have the largest storage heat flux (mean ~ 80% of Q^*)

RESULTS: OMIS/LUMPS-Derived Fluxes (Sensible Heat Flux)

• **Rooftops** characterised by highest sensible heat flux (mean ~ 60% Q^*)

• Roads/pavements have the lowest sensible heat flux (mean ~ 10% Q^*)

Influence of Spatial Scale on Q_H (Wm⁻²)

Landcover (6 m)	Mixed Pixels (Q _H)		Pure Pixels (Q _H)		
	Mean	sd		mean	sd
Roof Dominated	199	62	Roof	255	44
Road Dominated	69	30	Road	45	5
Veg Dominated	104	43	Veg	84	45
All	130	81	All	152	109

- Spaceborne sensors have lower spatial detail (but more available data)
 - OMIS 6 m pixels ETM+ 30 60 m pixels ASTER 15 90 m
 - Aggregate OMIS data to lower spatial resolution to determine influence
 - Method 1: resample Q_H results to 30 and 90 m resolution
 - Method 2: resample OMIS imagery to 30 and 90 m resolution prior to classification
 - Calculate Q_H via LUMPS approach once more with degraded data and compare Q_H (W/m²) to original results obtained at 6 m

Influence of Spatial Scale (30 m)

Influence of Spatial Scale (90 m)

Most pixels now fully mixed classes

Q _H	90m Method 1		90m Method 2	
	Mean	sd	Mean	sd
All Pixels	123	33	135	32

Final Comments & Conclusions

- Thermal remote sensing imagery with a GIS-type database provides data to allow calculation of energy fluxes by LUMPS
- Shanghai changes land cover detail needs regular updates
- Using of spaceborne imagery maybe a practical solution for heat flux determination in urban areas where high resolution airborne data is only infrequently available
- Atm. & emissivity corrections seem ok but still need 3D info.

