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The recently available space-borne SAR sensor, PALSAR, is more promising than its predecessor JERS-1 for
biomass estimation because of its long wavelength (L-band), and its ability to provide data with different
polarizations, varying incidence angles and higher spatial resolutions. This research investigates the
potential of two-date dual polarization (HH and HV) SAR imagery for biomass estimation using different
kinds of texture processing and different combinations of single and dual polarization ratios. The inves-
tigation is conducted in a mountainous, sub-tropical study area where biomass levels are far beyond the
previously recognized saturation levels for L-band SAR images, and forest is a mixture of native and non-
native species and plantations.

We analyzed two-date SAR data with four steps of image processing, including raw data processing in
various combinations, texture measurement parameters of HH and HV polarizations, texture measure-
ment parameters of HH and HV together (both jointly and as a ratio), and a ratio of two-date texture
parameters along with a single and two-date ratio. When the processed images were compared with
ground data from 50 plots, the performance from raw data processing was low, with adjusted
r2=0.22, but after all four processing steps, promising model accuracy (adjusted r?=0.90 and
RMSE = 28.58 t/ha) and validation accuracy (using the Leave-One-Out-Cross-Validation) with adjusted
r? =0.88 and RMSE = 35.69 t/ha, were achieved from the combination of single- and two-date polariza-
tion ratios of texture parameters.

The strong performance achieved indicates that L-band dual-polarization (HH and HV) SAR data from
PALSAR has great potential for biomass estimation, far beyond the previously reported L-band saturation
point for biomass. This result is attributed to the synergy among texture processing and dual polarization
on the one hand, which were able to average out random speckle noise, and the use of ratio instead of
absolute quantities, due to its well known ability to reduce forest structural and terrain effects. The addi-
tional use of two-date SAR data with these processing techniques was able to add complementary infor-
mation derived from biomass response in both wet and dry seasons. Thus overall, undesirable image
noise and terrain effects were reduced.
© 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

B.V. All rights reserved.
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1. Introduction address this problem (Harrell et al., 1995) by offering an effective

method for forest biomass estimation at local, regional and global

The estimation of forest biomass is one of the most persistent
uncertainties in understanding the carbon cycle. This is especially
true in tropical forest because of its complicated stand structure
and species heterogeneity (Lucas et al., 2000; Nelson et al., 2000;
Steininger, 2000; Foody et al., 2003; Lu, 2005, 2006). Remote sens-
ing data, properly linked to forest biophysical properties, can
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scales (Brown et al., 1989; Le Toan et al., 1992; Rosenqvist et al.,
2003; Foody et al., 2003).

The most promising type of sensor appears to be Synthetic
Aperture Radar (SAR) due to its sensitivity to forest structure (Har-
rell et al., 1995; Castel et al., 2002) as well as all-weather capabil-
ity, and useful relationships have been established between radar
backscatter and forest biophysical parameters (Dobson et al.,
1992; Le Toan et al.,, 1992). Many studies of biomass have been
conducted using both airborne (Wu, 1987; Le Toan et al., 1992;
Dobson et al., 1992; Ranson and Sun, 1994; Ranson et al., 1995;

0924-2716/$ - see front matter © 2012 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.isprsjprs.2012.03.002


http://dx.doi.org/10.1016/j.isprsjprs.2012.03.002
mailto:lrsarker@yahoo.com
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.002
http://www.sciencedirect.com/science/journal/09242716
http://www.elsevier.com/locate/isprsjprs

M.L.R. Sarker et al./ISPRS Journal of Photogrammetry and Remote Sensing 69 (2012) 146-166 147

Dobson et al., 1995; Kasischke et al., 1995; Foody et al., 1997; Har-
rell et al., 1997; Luckman et al., 1997; Mougin et al., 1999; Santos
et al., 2003) and space borne SAR (Luckman et al., 1998; Kurvonen
et al., 1999; Fransson and Israelsson, 1999; Santos et al., 2002; Cas-
tel et al., 2002; Sun et al., 2002; Tsolmon et al., 2002; Kuplich et al.,
2005; Lucas et al., 2007; Champion et al., 2008) and differing de-
grees of success have been obtained.

Most previous studies using space-borne SAR have been limited
to single frequency and single polarization data. Although multi-
polarization and multi-frequency airborne SAR has been used for
biomass estimation, it has not been widely available or geograph-
ically extensive due to the lack of extensive and/or repeat data,
though the results of these studies represent the foundation for
most current and future SAR research (Townsend, 2002). Previous
research recommends P-band SAR as the most suitable choice for
measurement of woody biomass (Dobson et al., 1992; Le Toan
et al,, 1992; Rignot et al., 1994; Ranson and Sun, 1994; Kasischke
et al., 1995; Imhoff, 1995; Harrell et al., 1997; Mougin et al.,
1999; Kurvonen et al., 1999; Santos et al., 2003) but there is cur-
rently no space borne platform with P band radar. However,
researchers also found L-band, particularly the cross polarized L-
HV, to be effective for biomass estimation (Hussin et al., 1991; Le
Toan et al., 1992; Dobson et al., 1992; Rignot et al., 1994; Ranson
and Sun, 1994; Kasischke et al., 1995; Harrell et al., 1997; Luckman
et al.,, 1997; Sun et al,, 2002; Ranson et al., 1997; Lucas et al., 2007).

Until recently JERS-1 was the only Satellite SAR operating in L-
band, but its single-band, single-polarization configuration was not
optimal for forest biomass estimation (Townsend, 2002 ), and many
researchers (Sun et al., 2002; Castel et al., 2002; Hese et al., 2005;
Lucas et al., 2007) expected the new generation space borne SAR
sensors particularly PALSAR to significantly improve biomass esti-
mation. Currently the three most advanced satellite SAR sensors
i.e. PALSAR (L-Band), RADARSAT-2 (C-Band) and TerraSAR (X-Band)
provide data with different polarizations, different incidence an-
gles and high spatial resolutions, and this has provided new oppor-
tunities for research in biomass estimation using SAR data.

However, the improvement of biomass estimation depends not
only on the SAR data but also requires efficient SAR data processing
(Imhoff, 1995), as the raw SAR backscattering coefficient becomes
saturated at fairly low biomass levels (Kurvonen et al., 1999; Dob-
son et al., 1992; Kasischke et al., 1994; Rauste et al., 1994; Rignot
et al., 1994; Foody et al., 1997). Several ways have been suggested
to estimate biomass beyond the saturation point. These include (i)
using longer wavelengths (Imhoff, 1995) due to their better canopy
penetration than shorter wavelengths, enabling more backscatter
from the woody components, (ii) using SAR data processing such
as texture, as texture can maximize the discrimination of spatial
information independently of tone (i.e. backscatter) and increase
the biomass range that can be measured, thus increasing the satu-
ration level (Kuplich et al., 2005; Luckman et al., 1997; Salas et al.,
2002; Champion et al., 2008), (iii) using the ratio of SAR images, as
polarization ratios do not saturate as quickly (Dobson et al., 1995).
In addition, ratios can reduce topographic bias (Ranson et al., 2001;
Ranson et al., 1995; Shi and Dozier, 1997), and forest structural ef-
fects (Foody et al., 1997; Dobson et al., 1995; Ranson et al., 1995;
Ranson and Sun, 1994) and thus enhance the relationship between
radar backscatter and biomass beyond observed saturation levels.
Furthermore, it has been suggested to estimate biomass (iv) using
several SAR images by averaging or other means, to reduce speckle
induced error and other random errors in the estimation process
(Kurvonen et al., 1999; Fransson and Israelsson, 1999). It therefore
seems reasonable to expect that biomass estimation could be im-
proved by using longer wavelength SAR data accompanied by dif-
ferent image processing techniques. This research takes into
consideration recommendations from previous SAR biomass

studies, in the context of newly available advanced SAR sensors
and SAR processing algorithms.

1.1. Objectives

The main objective of this research is to investigate the poten-
tial of L-Band dual polarization SAR (PALSAR) data for biomass esti-
mation in a complex sub-tropical evergreen forested region, where
biomass levels are far beyond the previously stipulated saturation
levels of L-band. Other more specific objectives are to

e investigate the performance of two-date raw SAR data using a
variety of combinations of HH & HV polarization, both individ-
ually and jointly, for biomass estimation,

o explore the potential of texture parameters of HH & HV polari-
zation SAR data for biomass estimation,

e investigate the potential for biomass estimation using HH & HV
texture parameters both jointly (without ratio), and as ratio,
and

e investigate the ratio of two-date dual polarization (HV & HH)
texture parameters, along with a combination of single and
two-date ratios for biomass estimation.

2. Study area and data

The study area for this research is the Hong Kong Special
Administrative Region (Fig. 1) which lies on the southeast coast
of China, just south of the Tropic of Cancer. The total land area of
Hong Kong is 1100 km? and includes 235 small outlying islands.
Although the population is over 7 million, only about 15% of the
territory is built-up and less than 1% is still actively cultivated.
Approximately 40% of the total area is designated as Country Parks
which are reserved for forest succession under the management of
the Agriculture, Fisheries and Conservation Department (AFCD).
The native sub-tropical evergreen broad leaf forest has been re-
placed by a complex patchwork of regenerating secondary forest
in various stages of development, and plantations. Forest grades
into woodland, shrubland then grassland at higher elevations.

Two dates of images with dual polarization (HV and HH) from
the L-band fine-beam PALSAR SAR sensor were used in this study
(Table 1).

3. Methodology

The methodology (Fig. 2) of this study comprises two parts, i.e.
allometric model development for field biomass estimation, and
SAR image processing.

3.1. Allometric model development

Due to the lack of an allometric model for converting the mea-
surable tree parameters to actual biomass, it was necessary to har-
vest and measure a representative sample of trees. Since tree
species in Hong Kong are very diverse, the harvesting of a large
sample was required. This was done by selecting the dominant tree
species comprising a total of 75 trees in 4 DBH (diameter at breast
height) classes (less than 10, 10-15, 15-20 and 20 cm and above)
and standard procedures were followed for tree harvesting (Over-
man et al., 1994; Brown, 1997; Ketterings et al., 2001).

The harvested trees were separated into fractions including
leaves, twigs, small branches, large branches, and stem. After mea-
suring the fresh weight, representative samples (Fig. 3) from every
part of the tree were taken for dry weight measurements in an
oven at 80 °C until a constant dry weight was obtained (Fig. 3).
The weight of every sample was estimated using the same electric
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Fig. 1. Study area and location of the sample plots.

Table 1
PALSAR data description.
Date 26 September, 2008 11 May, 2008
Frequency Band L-Band L-Band
Mode Ascending Ascending
Polarization HH + HV HH + HV
Incidence angle 344 344
Product type Ground range, 1.5 level Ground range, 1.5 level
Pixel spacing 10 x 10 10 x 10

weight balance at 0.002 gm precision. The ratio of dry weight (DW)
to fresh weight (FW) was calculated for every part of the samples
using DW and FW of each part of the tree. Using the ratio, DW
was calculated for every part, and finally the DW of each tree
was calculated by summing the DW of all parts.

Regression models used by previous researchers (Brown et al.,
1989; Overman et al., 1994; Arevalo et al., 2007) were tested in or-
der to find the best fit using DW as the dependent variables and
DBH and height as the independent variable in different combina-
tions. Finally, using the log transformed DBH and dry weight (DW)
the best fit model (Table 2) was found, considering all test param-
eters including correlation coefficient (r), coefficient of determina-
tion (r?), the adjusted coefficient of determination (adjusted 2),
and RMSE. Approximately 93.2% accuracy (adjusted r? 0.93) and
RMSE 13.50 t/ha were obtained using this best fit model (Table 2).
This was deemed highly satisfactory in view of the great variety of
tree species, and is similar to the accuracies of several other studies
(Brown et al., 1989; Overman et al., 1994).

3.2. Field plot measurement and field biomass estimation

To build a relationship between image parameters and field bio-
mass, 50 sample plots covering a variety of tree stand types were
selected after consultation with country park officers, using purpo-
sive sampling. Circular plots with a 15 m radius were determined
considering the image resolution (approximately 10 m), orthorec-
tification error and GPS positioning error. All sample plots were
positioned within a homogenous area of forest, avoiding steep
slopes and at least 15 m distant from other features such as roads,
water-bodies and other infrastructure. A Leica GS5+ GPS was used
to determine the center of each plot using DGP mode for accuracy
within +3 m. For precise position, a PDOP value below 4 was al-
ways attempted. Both DBH and tree height were measured for all
trees within the circular plot region. The DBH of trees (Fig. 4)
was measured at 1.3 m above ground and the heights of small
and large trees were measured by Telescopic-5 and DIST pro4,
respectively (Fig. 4). Trees with diameter below 2.5 cm DBH were
not included. Finally using the measured parameter DBH, the bio-
mass of each tree and biomass of all trees in a plot were estimated
(Table 3) using the allometric model developed for this study area.

3.3. SAR data processing

3.3.1. Calculation of backscattering coefficient

Before texture measurement, the image was converted from an
arbitary floating point number output by the SAR processor to a
calibrated backscattering coefficient o, in dB using the following
equation:



M.L.R. Sarker et al./ISPRS Journal of Photogrammetry and Remote Sensing 69 (2012) 146-166 149

Fig. 2. Overall methodology.

Fig. 3. Tree harvesting procedure.

0o(dB) = 10 - log,,(DN - DN) — CF

where DN = digital number, and CF = sensor calibrated constant, set
at 83.0 dB. The o, in dB was converted to o, in power image and
this was then converted to amplitude to use as an input to texture
measurement, mainly because the amplitude image provides a bet-
ter dynamic range over low backscattering targets. Subsequently,

conversion to g, in power and ¢, in dB were carried out for model
development.

3.3.2. Texture analysis

Texture is a characteristic used to identify objects or regions of
interest in any image which is produced by spatial variations in im-
age intensities (Baraldi and Parmiggiani, 1995) and studies have
shown that in most cases, texture, not intensity, is the most impor-
tant source of information in high-resolution radar images (e.g.
Ulaby et al., 1986; Dobson et al., 1995; Podest and Saatchi, 2002;
Dell’Acqua and Gamba, 2003). Several methods and techniques
for describing texture, based on statistical models have been devel-
oped (Podest and Saatchi, 2002; Dekker, 2003; Kuplich and Curran,
2003; Kuplich et al., 2005). For this study, three categories of tex-
ture measurement were selected, to test their potential for biomass
estimation (Table 4). The first is the grey level co-occurrence ma-
trix (GLCM) (Haralick et al., 1973) along with some Grey Level Dif-
ference Vector (GLDV)-based texture measurements. The second is
the sum and difference histogram proposed by Unser (1986) as an
alternative to the usual co-occurrence matrices used. The third
group is model based log form texture parameter estimation, re-
ported by Oliver (1993) and Oliver and Quegan (2004). Extracting
appropriate descriptions of texture also involves the selection of
moving window sizes (Chen et al., 2004; Lu, 2005). In general a
small window will produce noisier estimates of the texture
descriptor but retain high spatial resolution, while a larger window
will amplify estimation errors near spatial instationarities. How-
ever, the estimation of texture parameters should perhaps not
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Table 2
Allometric model development.
Regression Model Coefficient & Value Std Err. of Coef. Multiple r2 r2 Adjusted r? RMSE (kg) p
InDW=a+bxIn DBH a -2.057 183 .96 .93 93 13.52 .0005
b 2.289 .072

Fig. 4. Field plot measurement (DBH & Height).

Table 3
Dry weight (biomass) distribution of selected field plots.
Biomass Biomass of each plot Number Percentage
range (t/ha) of plots of plots
50-100 50.52, 57.45, 57.53, 61.14, 77.46, 12 24
78.11, 82.38, 83.24, 83.87, 92.16,
93.46, 94.68
100-150 104.60, 106.56, 107.04, 108.10, 18 36
109.39, 110.98, 111.67, 120.36,
122.96, 124.13, 131.55, 132.64,
133.07, 136.20, 138.04, 141.90,
147.49, 149.64
150-200 150.18, 151.46, 156.69, 157.44, 13 26
157.59, 163.14, 166.56, 168.02,
177.49, 178.49, 178.89, 188.62,
89.35
200-300 270.87 1 2
300 & above  312.05, 317.93, 346.09, 360.84, 6 12
518.60, 530.00
Total 50 100

use a fixed window at all because of the variation of the objects un-
der investigation. Considering the need for texture measurement,
the spatial resolution of the data (approximately 10 m) and that
the forest structure in the study area is dense and compact, all tex-
ture measurements were performed using 5 small to medium win-
dow sizes from 3 x 3 to 11 x 11. Texture was computed based on
directional invariant measures which are the averages among tex-
ture measures for four directions (0°, 45°, 90°, and 135°). Texture
measurement was performed using the original data without
speckle filtering because filtering averages out a lot of the texture
characteristics. Although a good filtering algorithm suppresses
speckle and preserves edges, these two requirements are hard to
satisfy simultaneously, and there is always a trade-off between
suppression of speckle and preservation of the detailed features,
particularly texture (Nyoungu et al., 2002).

3.3.3. Geometric correction

Orthorectification of all texture images of two-date images was
carried out using the Satellite Orbital Math Model to compensate
distortions such as sensor geometry, satellite orbit and attitude
variations, earth shape, earth rotation, and relief. To ensure effec-
tive co-registration between images all images were co-registered
with a SPOT-5 image (as the reference image) and orthorectifica-
tion was done using a high resolution (10 m) DEM and approxi-
mately 40 well distributed GCPs. For the date 1 image (26
September, 2008), the RMS error in X and Y was 0.32 and 0.22 pix-
els, respectively, while the overall error was 0.32 pixels. For date 2
image (11 May, 2008) the RMS error in X and Y was 0.24 and
0.24 pixels, respectively, while the overall error was 0.34 pixels.
All images were resampled to a 10 m pixel size using nearest
neighbor resampling.

3.4. Statistical analysis

To represent the relationship between field biomass and remo-
tely sensed data, some researchers have used linear regression
models with or without log transformation of field biomass data
(Wu, 1987; Rauste et al., 1994; Ranson and Sun, 1994; Austin
et al., 2003), while others have used multiple regression (Dobson
et al., 1995; Kasischke et al., 1995; Rignot et al., 1995; Harrell
et al., 1997; Mougin et al., 1999; Kurvonen et al., 1999; Townsend,
2002; Foody et al., 2003; Zheng et al., 2004; Hyde et al., 2006; Hyde
et al., 2007). Non-linear regression (Santos et al., 2003) and semi-
empirical models (Castel et al., 2002) have also been examined.
Although no model can perfectly express this complex relation-
ship, researchers are still using multiple regression models as
one of the best choices. In this research, a stepwise, multiple-linear
regression approach (Kutner et al., 2005) was used to establish
relationships between the SAR parameters and field biomass col-
lected from 50 plots.

An area of interest (AOI) mask representing an average of
3 x 3 pixels was used to extract quantities related directly to the
go amplitude (referred to as SAR parameters hereafter) and SAR
texture images (referred to as SAR texture parameters hereafter)
from each sample plot. Retrieval of the mean value for each sample
plot was conducted by overlaying the AOI mask on corresponding
SAR image layers including (i) intensity of HH and HV polarizations
along with the ratio of single date and two-date intensity data, (ii)
texture images of HH & HV polarizations individually, iii) texture
images of HH and HV jointly and as a ratio (HV/HH), and iv) the ra-
tio of two-date HH & HV texture parameters along with single and
two-date ratio combinations. All SAR image parameters were used
as independent variables and the plot biomass (50 plots) as the
dependent variable.

In multiple regression modeling, difficulties such as multicollin-
earity and overfitting may arise when a large number of independent
variables are used, such that independent variables are highly corre-
lated to one another. To avoid overfitting problems, as well as to en-
sure finding the best fit model, five common statistical parameters,
namely correlation coefficient (r), coefficient of determination (r?),
adjusted r?, RMSE and p-level (for the model) were computed. An-
other seven statistical parameters such as Beta coefficient (B), Std.
Err. of B, p-level, tolerance (Tol = Tolarence = 1 — R?) , variance



Table 4
The formulas of texture measurements used in this study.

Gray level co-occurrence matrix (GLCM) based texture parameter estimation

Sum and difference histogram (SADH) based texture parameter

Model-based log form texture
parameter estimation
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inflation factor (YIF = VIF, = ﬁ), Eigen value (EV), and condition
index (Cl = k; =41 =1,2,...,p) were calculated to test intercept
fitness and multiéollinearity effects. To indicate multicollinearity
problems, a tolerance value of less than 0.10 (Belsley, 1990), VIF va-
lue of greater than 10 (Belsley, 1990; Kutner et al., 2005; Douglas
et al., 2006; Hyde et al., 2007), Eigen value close to zero (Douglas
et al., 2006; Belsley et al., 1980), and condition index greater than
30(Belsley et al., 1980; Belsley, 1990; Douglas et al.,2006) were used
as determinants.

3.5. Processing of SAR data for modeling

The SAR data were processed in the following four steps for bio-
mass modeling.

3.5.1. First processing step: raw data
In order to test the potential of raw SAR data, the following SAR
derived parameters were used in the multiple regression models:

(a) SAR derived parameters of HH and HV polarization individ-
ually for each of the two image dates,

(b) SAR derived parameters of HH and HV jointly (i.e. all inde-
pendent parameters together in the model) for each date,

(c) SAR derived parameters of HH and HV as a ratio for each
date,

(d) SAR derived parameters of two-date as a ratio. i.e.

Hvdmu +H Vdﬂ’fz(zooxuszs) and
HHgate +HHgate ’
1(20080511) 2(20080926)

20080511)

(e) Combination of single and two-date ratios of SAR derived
parameters, i.e.

.. . . . HVdate +HVae. | HVgate

joint intensity ratlo—l) - 1(20030511>+HH 2(20080926) s 1(20080926)
dateq (20080511 date;(20080926) dateq 50080926)

and

.. . . . HVdate +HVgate HVate

joint intensity ratio- 2) |: 1(20080511) 2(20080926) ¢, 120080511) |

HHda‘euzuosom) +HH(““52{20080926/ HH“ﬂ‘euzoososl 1)
3.5.2. Second processing step: with texture

One hundred and twenty five texture parameters derived in HH
as well as HV polarization, using 25 texture measurements, from
five window sizes were used in the modeling as follows:

(a) All 125 parameters derived from HH texture measurements
individually for each date, and

(b) All 125 parameters derived from HV texture measurements
individually for each date.

3.5.3. Third processing step: texture with both polarizations

Since the result of the previous step (step-2) revealed that nei-
ther HH nor HV polarization texture parameters alone produce a
satisfactory model for biomass in this high biomass situation, we
then tested for improvement, using texture parameters of HH &
HV polarizations together in the modeling as follows:

(a) Texture parameters from HH and HV polarizations jointly for
each date, i.e. 250 texture parameters (125 from each polar-
ization) from both polarizations were used in the modeling,
and

(b) Texture parameters from HH and HV polarizations as a ratio
for each date, i.e. the ratio of 125 texture parameters (125
from each polarization) were used in the modeling.

3.5.4. Fourth processing step: two-date texture parameter
combination

While in all previous texture processing steps the investigations
were carried out using two-date images individually, here we used

the ratio of two-date dual polarization texture parameters as inde-
pendent variables in the modeling in order to take advantage of
greater image averaging. This comprised:

(a) The ratio of texture parameters of two-date SAR data of both
polarizations (125 independent variables), i.e. a two-date

Texture_HVate, (20080511) +Texture_HVyae, 20080026)

texture image ratio =
g Texture,HHdm] (20080511) +Texture,HHdmz (20080926)

(b) The combination of single and two-date ratios of texture
derived SAR parameters (250 independent variables), i. e.
joint texture ratio-1

_ [Texture_HVgate, (20080511) +Texture _HVgate, (20080926)
Texture_HHgate, (20080511)+Texture_HHgaee, 20080926

Texture_HVgate, (20080926)]
Texture _HHgate, (20080926)
Joint texture ratio-2

_ [Texture_HVyate, (20080511) +Texture_HVate, 00s0926) , Texture_HVyate, (20080511
Texture_HHgare, (20080511)+Texture_HHgare, 20080926) ~~ 1eXture_HHgate, (20080511) | *

3.6. Biomass estimation model validation

One important but at the same time difficult aspect of forest
biomass estimation from remote sensing data is model validation.
Validation is a useful and necessary part of the model building pro-
cess in order to determine if the model will function successfully in
its real world environment (Douglas et al., 2006). By far the pre-
ferred method to validate a regression model is through the collec-
tion of new data but the collection of new data is often neither
practical nor feasible (Kutner et al., 2005). Thus, because of the
scarcity of field biomass data, biomass estimation models have
rarely been validated adequately (Lu, 2006).

In this research, data from 50 field plots were used to devel-
op models and the number of field plots is considered reason-
able and comparable or better than other similar studies. The
use of some plots for model validation would leave fewer plots
for model development, but the option was considered undesir-
able due to the large number of image parameters (as indepen-
dent variables) used in this research as well as the possible
omission of some valuable data from the model development
process.

Therefore, considering the importance of model validation as
well as the limited amount of field biomass data, this research per-
formed cross-validation using the Leave-One-Out-Cross-Validation
(LOOCV) method. Leave-One-Out Cross-Validation is a sensible
choice as it has been shown to provide an almost unbiased esti-
mate of the true generalization ability of models (Cawley and Tal-
bot, 2004). For this method the model is trained multiple times,
using all but one of the training set data points. The form of the
LOOCV algorithm can be defined as follows:

For k=1 to R (where R is the number of training set points)

e Temporarily remove the kth data point from the training set.
e Train the learning algorithm on the remaining R — 1 points.
e Test the removed data point and note your error.

Calculate the mean error over all R data points.

This model has not presently been applied to the validation of
biomass estimation models although it has been used successfully
in other disciplines such as neural network. The advantage of LOO-
CV for the validation of biomass estimation is that this process
does not waste data and the resulting regression model is essen-
tially the same as if it had been developed using all the data points.
However, the main drawback to the LOOCV is that it is expensive —
the computation must be repeated as many times as there are
training set data points (Cawley and Talbot, 2004). Considering
the field data points (50) and computational intensity of the LOO-
CV method, this validation was only conducted for the best three
models proposed in Section 4.4.
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4. Results and analysis

The biomass of the 50 field plots, which ranged from 55 to
530 t/ha, was used as the dependent variable and SAR parameters
derived from different processing combinations of two-date dual
polarized SAR data were used as independent variables in the
modeling process. The results and analysis of the four processing
steps are presented as four separate subsections.

4.1. Step 1: Biomass estimation using two-date raw PALSAR data

Forest biomass was estimated from raw SAR data using the
method described in Section 3.5.1. In general, the relationships be-
tween field biomass and all raw SAR derived parameters were
found to be poor, considering all 11 models tested (Figs. 5 and
6). In the first stage, a combination of HV and HH of date 2 (11
May, 2008) showed a stronger relationship (adjusted r?=0.22) than
date 1 (26 September, 2008), but was still too low to give sound
biomass estimates. Similar poor results were also obtained from
the second stage of analysis using the different types of two-date
image ratios (Fig. 6).

The poor results obtained from the intensity data processing
were not completely unexpected because of speckle noise and
the known saturation problem of SAR data. Previous studies
(Kurvonen et al.,, 1999; Dobson et al., 1992; Kasischke et al.,
1994; Rauste et al., 1994; Rignot et al., 1994; Foody et al., 1997)
have shown that direct application of the backscattering coefficient
for biomass retrieval is limited by saturation unless the effects of
forest structure are explicitly taken into account. Despite the prob-
lem of speckle noise and saturation level, many researchers found
good relationships using the ratio of raw backscattering from dif-
ferent polarizations (Dobson et al., 1995; Ranson et al., 1995; Ran-
son and Sun, 1994; Harrell et al., 1997; Kasischke et al., 1997;
Rignot et al., 1994; Mougin et al., 1999). Moreover, some research-
ers also found good results using a set of SAR images in the averag-
ing process (Kurvonen et al., 1999; Townsend, 2002). However, in
this research we obtained poor results for biomass estimation

Fig. 5. Performance of biomass estimation using single date intensity data.

Fig. 6. Performance of biomass estimation using intensity data of two-date
combination.

Fig. 7. Performance of biomass estimation using texture parameters of HH & HV
polarizations.

using all intensity data processing combinations (single-date ratio,
two-date ratio, and single and two-date ratio) of SAR data.

This inconsistency with other studies can be explained by the
fact that the biomass of our field plots is very high, with almost
75% of plots having biomass above 100 t/ha (Table 3). This is be-
yond the reported saturation levels of raw L-band SAR data, from
previous studies of ca. 50-70 t/ha (Dobson et al., 1992; Imhoff,
1995; Le Toan et al., 1992). Since previous work has demonstrated
the potential of biomass estimates from texture images (Luckman



Table 5

Results obtained from HH & HV dual polarization texture parameters.

Data Model fitting parameters Fitting parameters for intercept and variables
r2 r2 i RMSE (t/ p- Variable name & intercept B Std. Err.of B p-Level Tol  VIF EV Cl
ha) Level
Model 1: Texture parameters of HH polarization 035 031 74.60 .0001 Intercept 192.26 34.10 0.0005 - - 3.20 1.00
(20080511)
VI_HH_5x1764.60 —-.08 369.44 0.0005 12 831 .70 213
Contrast_HH_3x3 -.08 .02 0.0001 59 1.67 .08 6.09
Normalized Coefficient of Variation_.HH_7 x 7 —6402 1409 0.0005 15 670 .01 17.29
Model 2: Texture parameters of HH polarization 044 039 75.78 .0001 Intercept 327.12 50.62 0.0005 - - 4.19 1.00
(20080926)
Inverse_Difference_HH_5 x 5 -2191.04 420.19 0.0005 18 543 62 2.61
GLDV Angular Second Moment_HH_9 x 9 4746.02 1087.53 0.0005 56 178 .15 5.57
Homogeneity_HH_3 x 3 -2191.04 196.49 0.0001 25  4.01 .05 9.31
Skewness_HH_9 x 9 -63.71 18.72 0.0001 91 1.10 .01 19.98
Model 3: Texture parameters of HV polarization 0.53 0.49 69.09 .0000 Intercept 241.39 30.19 .00005 - - 4.24 1.00
(20080511)
Contrast_HV_5 x 5 2.1 0.37 0.0002 13 793 45 3.05
Dissimilarity_HV_5 x 5 -52.0 12.09 0.0009 .09 11.05 .21 3.05
VA_HV_11 x 11 -15613 4057 0.0003 69 145 .08 7.22
Contrast_HV_11 x 11 1.0 0.41 0.0190 24 415 .02 16.12
Model 4: Texture parameters of HV polarization 0.51 0.45 71.16 .0005 Intercept 281 39.5 0.0005 - - 4.820 1.00
(20080926)
Normalized Coefficient of —6830 1295 0.0004 17 5.76 81 242
Variation_HV_11 x 11
Dissimilarity_ HV_11 x 11 29 10.2 0.0067 31 320 .23 4.61
Contrast_HV_3 x 3 -18 43 0.0009 51 1.98 .08 7.76
Variance_HV_11 x 11 3173224 872313 0.0007 36 281 .05 10.15
Standard Deviation_HV_9 x 9 49 15.8 0.0033 14 727 .01 2221

pSl
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Fig. 8. Change in performance from intensity of HH & HV data to texture
parameters of HH & HV.

et al,, 1997; Salas et al., 2002; Kuplich et al., 2005; Champion et al.,
2008), this research decided to investigate further using the SAR
data processing technique of texture measurement.

4.2. Step 2: Biomass estimation using HH and HV texture parameters
of two-date PALSAR data individually

The method described in Section 3.5.2 was used to estimate for-
est biomass from the texture parameters of SAR data. The result of

biomass estimation improved substantially for both dates and for
both polarizations using the texture parameters of HH & HV SAR
data (Fig. 7 & Table 5), compared to all combinations of raw pro-
cessing. The best results of 0.39 (adjusted r?) and 0.49 (adjusted
r?) were obtained from the texture parameters of HH polarization
(Model 2 in Table 5) and HV polarization (Model 3 in Table 5) data
respectively. These results were 79.18% and 125.33%, higher (Fig. 8)
than the best result (adjusted r?=0.22) obtained from the raw data
processing. The improved result using texture parameters is in
agreement with the findings of previous studies (Luckman et al.,
1997; Kuplich et al., 2005; Champion et al., 2008).

However, different results were obtained from the HH and HV
texture parameters, with HV polarization (Fig. 7 and models 3 and
4 in Table 5) outperforming the HH polarization texture data
(Fig. 7 and models 1 and 2 in Table 5). From the texture parameters
of HH polarization the highest result (adjusted r?>=0.39 and
RMSE = 75.78 t/ha) was obtained using model 2 (Table 5). This mod-
el used five texture variables (Inverse_difference_HH_5 x 5 + GLDV
Angular Second Moment_HH_9 x 9 + Homogeneity_HH_3 x 3
+ Skewness_HH_9 x 9). All variables were significant at the 95% sig-
nificance level and multicollinearity effects were minimal. However
only 40% of the variability was explained, and the estimated biomass
of two high biomass plots was very far from the trend line (Fig. 9),
thus yielding a very high RMSE (75.78 t/ha).

On the other hand, using the texture parameters of HV polariza-
tion the highest result (adjusted r? = 0.49) was obtained from
model 3 (Table 5). This model only used four texture variables
(Contrast_HV_5 x 5 + Dissimilarity_HV_5 x 5+ VA_HV_11 x 11 +
Contrast_HV_11 x 11). Although all variables were significant and
no multicollinearity effect was observed, only 50% of the variability
is explained by this model, and the predicted biomass of some
plots is still far from the trend lines (Fig. 10).

The better result obtained using the texture parameters of HV
polarization rather than the texture parameters of HH polarization
was not surprising, as this result confirms other studies which
found HV polarization to have better sensitivity for biomass esti-
mation (Rauste et al.,, 1994; Rignot et al., 1994; Dobson et al.,
1995; Ranson et al.,, 1995; Kasischke et al., 1995; Mougin et al.,
1999; Foody et al.,, 1997; Luckman et al., 1997; Collins et al.,
2009). However, since we still obtained only ca. 50% variability of

Fig. 9. Relationships between observed and model predicted biomass using texture parameters of HH polarization.
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Fig. 10. Relationships between observed and model predicted biomass using texture parameters of HV polarization.

the field biomass using the texture parameters of HV polarization
SAR data, we conclude, along with Ranson and Sun (1994), that
both HH and HV polarizations alone are ineffective when biomass
levels are beyond the normal saturation level of L-band SAR, as in
our study area. As a result, we decided to explore further using
both polarization SAR texture parameters together.

4.3. Step 3: Biomass estimation using combined HH and HV texture
parameters of two-date PALSAR data

For the forest biomass estimation, the method depicted in Sec-
tion 3.5.3 was developed using the HH and HV parameters jo intly
(without and with ratio). The highest adjusted r? obtained were
0.63 and 0.78 (Table 6 and Fig. 11) using the HH and HV texture
parameters jointly (without ratio), as well as the ratio (HV/HH)
of texture parameters, respectively. This result indicates consider-
able improvement of biomass estimation (Fig. 12) compared to
intensity (adjusted r? = 0.22, in Fig. 5), texture parameters of HH
polarization (adjusted r? = 0.39, model 2 in Table 5) and texture
parameters of HV polarization (adjusted r? = 0.49, model 3 in Ta-
ble 5) data.

The best model using combined HH and HV texture parameters
alone (without ratio) was found to be model 1 (Table 6), with six
variables (Contrast_HV_5 x 5+ Normalized Coefficient of Varia-
tion_HH_11 x 11 + GLDV_Mean_HV_5 x 5 + Skewness_HH_7 x 7 +
Dissimilarity_HV_11 x 11 + Kurtosis_HV_11x11). The model and
intercept were significant and multicollinearity effects were not
evident, as Tol, VIF and CI were less than the predefined thresholds.
Although this model was significant and biomass estimation was
improved compared to all previous processing steps (adjusted
r20.63, Fig. 12), this model was not considered robust, with still
only ca. 63% and relatively high RMSE (57.64 t/ha) due to some
high biomass plots (Fig. 13). The better result obtained from the
HH and HV polarization texture parameters together is not surpris-
ing as previous studies found that the use of multi-polarization
datasets with both like- and cross-polarized channels can provide
more information than either alone, and may improve biomass
estimation algorithms (Ranson and Sun, 1994; Kasischke et al.,
1997).

Fig. 11. Performance of biomass estimation using texture parameters of HH & HV
polarizations together.

The best overall model (model 3 in Table 6) was obtained using
the ratio of HV and HH polarization texture parameters with nine
variables (Amplitude Image + Kurtosis_5 x 5 + Homogene-
ity_5 x 5+ Contrast_5 x 5+ Standard  Deviation_3 x 3 + Angular
Second Moment_9 x 9+ GLDV Angular Second Moment_11
x 11 + Variance_9 x 9 +VI_5 x 5). The performance of this model
(adjusted r? = 0.78) was higher than that of all previous steps



Table 6
Results obtained from HH & HV dual polarization together.

Data Model fitting parameters Fitting parameters for intercept and variables
r2 rﬁdj RMSE (t/ha) p- Variables name & intercept B Std. Err. of B p-Level Tol  VIF EV Cl
Level

Model 1: Texture parameters of HV&HH (20080511) 0.67 0.63 57.64 .0005 Intercept 350.70 37.78 .00005 5.69 1.00
Contrast_HV_5 x 5 2.06 0.32 0.0005 0.13 7.89 0.64 297
Normalized Coefficient of —2318.37 430.21 0.0003 0.81 124 0.36 3.97
Variation_HH_11 x 11
GLDV_Mean_HV_5 x 5 -51.84 10.17 0.0007 0.09 1073 0.14 6.38
Skewness_HH_7 x 7 59.97 24.23 00173 090 1.11 0.09 781
Dissimilarity _HV_11 x 11 0.88 0.33 0.0110 027 3.78 0.06 10.09
Kurtosis_HV_11 x 11 -3.20 1.49 0.0374 0.83 120 0.02 19.01

Model 2: Texture parameters of HV&HH (20080926) 0.64 0.58 60.62 .0005 Intercept 228.00 70.30 0.0023 6.39 1.00
VL_HH_11 x 11 -293.71 100.89 0.0057 0.88 1.14 064 3.16
Inverse_Difference_HH_5 x 5 —1812.98 356.38 0.0008 0.18 570 0.53  3.47
GLDV Angular Second Moment_HH_9 x 9 5338 1020 0.0005 044 230 022 537
Homogeneity_HH_3 x 3 543.08 170.22 0.0026 023 439 010 7.92
Dissimilarity_ HV_11 x 11 33.48 7.81 0.0001 040 248 0.09 845
GLDV_Mean_HV_3 x 3 -13.70 3.56 0.0004 0.55 1.82 0.02 20.66
Skewness_HH_7 x 7 -39.81 19.65 0.0491 094 1.07 0.01 2547

Model 3: Ratio of single date texture parameters (20080511) 0.82 0.78 42.77 .0005 Intercept 698.66 62.91 0.0005 5.59 1.00
Amplitude Image -672.02 83.58 0.0005 049 205 186 1.73
Kurtosis_5 x 5 -20.67 3.40 0.0005 0.76 133 106 230
Homogeneity_5 x 5 28.07 4.28 0.0005 029 345 074 275
Contrast_5 x 5 31.27 3.39 0.0005 0.15 6.81 034 4.05
Standard Deviation_3 x 3 -23.72 5.82 0.0002 0.13 7.67 020 0.20
Angular Second Moment_9 x 9 83.06 14.87 0.0002 0.12 846 0.14 6.36
GLDV Angular Second Moment_11 x 11 —84.28 17.33 0.0018 0.12 817 0.04 1271
Variance_9 x 9 11.96 3.21 0.0006 042 240 0.03 14.88
VL5 x5 —-15.07 6.50 0.0255 0.26 3.81 0.01 27.67

Model 4: Ratio of single date texture parameters (20080926) 0.74 0.68 60.8 .0005 Intercept 5.090 298 0.0000 3.04 1.00
Sigma_dB -0.30 0.12 0.0159 0.81 124 069 3.59
Mean Dev. from mean_5 x 5 -3.17 0.44 0.0005 0.19 5.27 0.62 3.80
Mean Euclidean Distance _7 x 7 4.20 0.67 0.0005 0.06 17.16 045 443
Mean Euclidean Distance _11 x 11 -3.91 0.70 0.0002 0.06 16.04 0.15 7.58
Variance_11 x 11 3.18 0.98 0.0024 0.17 593 0.10 9.54
Kurtosis_11 x 11 -0.13 0.03 0.0003  0.71 141 0.05 13.06
VL9 x 9 0.73 0.20 0.0006 0.27 3.66 0.04 15.68
Angular Second Moment_3 x 3 0.11 0.04 0.0060 0.82 122 0.02 19.23
Standard Deviation_5 x 5 0.72 0.22 0.0018 020 5.09 0.01 25.23
GLDV_Mean_5 x 5 -0.42 0.13 0.0017 020 5.02 0.01 35.62
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Fig. 12. Change in performance of biomass estimation from intensity of HH & HV
polarizations to HH & HV texture parameters individually and jointly (without and
with ratio).

including the use of HH and HV polarization texture parameters to-
gether (Fig. 12). The model and intercept were significant and mul-
ticollinearity effects were not significant according to the
thresholds set for the multicollinearity assessment. The relation-
ship between observed and model predicted biomass (Fig. 14) indi-
cated that the model was robust and only a few plots deviated

from the trend lines, giving a much lower RMSE of 42.77 t/ha.
The improvement of biomass estimation using the ratio of dual
polarization texture parameters is in agreement with previous
studies in principle (Foody et al., 1997; Ranson et al., 1995; Dobson
et al.,, 1995; Harrell et al., 1997; Shi and Dozier, 1997) which found
that ratios of polarizations or bands have advantages for biomass
estimation as polarization ratios do not saturate as quickly as sin-
gle polarization. Moreover, ratios are known to reduce topographic
effects (Ranson et al., 2001) which are considerable in our moun-
tainous study area, and to reduce forest structural effects due to
forest type (Foody et al., 1997; Dobson et al., 1995; Ranson et al.,
1995). We believe that the model using the ratio of dual polariza-
tion texture parameters enhanced the relationship between radar
backscatter and biomass by reducing the topographic effect and
forest structural effect reasonably and effectively.

Although the result is promising, still only 78% variability of
field biomass was obtained from this processing. However, up to
this stage only single-date image ratios of dual polarization (HH
and HV) SAR have been tested individually. Since previous studies
have reported increased accuracy using more than one date of SAR
images (Kurvonen et al., 1999), we decided to investigate a two-
date ratio and two-date averaging of texture parameters for further
improvement.

4.4. Step 4: Biomass estimation using different types of ratio of two-
date PALSAR data jointly

The method illustrated in Section 3.5.4 for forest biomass esti-
mation using the texture parameter ratio of two-date PALSAR data
was tested. Compared to all previous image processing steps
(Fig. 16), the performance (Fig. 15) of biomass estimation improved
significantly using the two-date texture image ratio (Fig. 15 and
model 1 in Table 7) and a combination of single and two-date tex-
ture image ratios (Fig. 15 and models 2 and 3 in Table 7).

Using the two-date ratio of dual polarization (HH and HV)
texture parameters, the adjusted r’was 0.83 (model 1 in Table 7
and Fig. 16) with nine variables Kurtosis_3x3p + Aplitude
image_p + Skewness_5 x 5p + Homogeneity_5 x 5p+VI_11 x 11p +
Skewness_11 x 11p + Kurtosis_11 x 11p + Angular Second Mo-
ment_5 x5p + GLDV Entropy_3 x 3p). This result was considerably

Fig. 13. Relationships between observed and model predicted biomass using texture parameters of HH & HV polarizations jointly.
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Fig. 14. Relationships between observed and model predicted biomass using ratio of texture parameters of HH & HV polarizations.

better than the result (adjusted > = 0.78 & 0.68) obtained using a
single-date ratio of HH and HV texture parameters (model 3 in
Table 6). The model and intercept were significant, and multicollin-
earity effects were not noted. The RMSE (37.43) was lower than the
model (RMSE 42.77 t/ha) for the corresponding single-date texture
image ratio and the relationship between the observed and model-
predicted biomass (Fig. 17) was also stronger than for any previous
processing. This result confirms previous findings (Kurvonen et al.,
1999) that averaging of several images can reduce the RMSE and
improve biomass estimation.

In addition to the two-date texture parameters, we also investi-
gated ratio combinations of single and two date texture parame-
ters (Section 3.5.4 b). Thus it was possible to improve biomass
estimation even further, and very promising results (adjusted
r2 = 0.87and0.90) were obtained (models 2 and 3 in Table 7).
The best result (adjusted r?> = 0.90) was obtained from the joint
texture ratio-2 (model 3 in Table 7) with nine texture ratio
variables (GLDV_Mean_9x9p + Homogeneity_5 x 5p + Amplitude
Image + Kurtosis_5 x 5 + Normalized Coefficient of Variation_11 x
11p + Skewness_11 x 11p + Contrast_5 x 5+ VL_3 x 3 + GLDV
Entropy_9 x 9). The model and intercept were significant and mul-
ticollinearity effects were minimal or absent, as all indicators (Tol,
VIF, EV and CI) for multicollinearity effects were far below the pre-
defined thresholds. The relationship between the observed and
model predicted biomass (Fig. 16) appeared robust, as all plots
including both low and high biomass were very close to the fit line
resulting in a very low RMSE (28.58 t/ha). The result (adjusted
r> = 0.90 and RMSE =28.58 t/ha) is considerably better than for
all previous processing steps in this research, and is much better
than other results reported in the literature using L-band SAR in
such a high biomass situation.

5. Validation performance

The results of the model validation are presented in Figs. 18-23
for two-date texture ratio (model 1 in Table 7), joint texture ratio-1
(model 2 in Table 7) and joint texture ratio-2 (model 3 in Table 7)
respectively. Overall, the performances of the validation showed
that the proposed three models in Section 4.4 were stable and
can be used to predict forest biomass reasonably using indepen-
dent field data though the performance was different among the
three models.

Fig. 15. Performance of biomass estimation using two-date texture parameters
ratio and single-twodate texture parameters ratio combinations.

The adjusted r? and RMSE of the model using the two-date tex-
ture ratio (model 1 in Table 7) was 0.83 and 37.43 t/ha respec-
tively, and the adjusted r? (from 0.80 to 0.84) and RMSE (from
35.11 to 37.81 t/ha) computed for the training data using the LOO-
CV method were similar however slightly worse than the original
model (model 1 in Table 7). However, the overall validation accu-
racy (adjusted r*> =0.78 and RMSE =47.93 t/ha) (Fig. 18) was
worse than the original proposed model (adjusted r> = 0.83 and
RMSE = 37.43 t/ha). Although the validation accuracy was worse
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Fig. 16. Change in performance of biomass estimation among the all processing.

than the model accuracy, the accuracy was still reasonable consid-
ering the field biomass and number of sample size used for the
development of a generalized model for biomass estimation in
diversified forest conditions. In order to test the stability of the
model and validation process, a comparison was made between
the error (residual) of all points using the original proposed model
and the error (residual) of all data points for the LOOCV. The result
(Fig. 19) shows that the errors of the original model and of the val-
idation data set were normally distributed and were strongly cor-
related with each other (r? = 0.99). Thus the same pattern of errors
was observed in both the model and in the validation data points,
although the magnitude of error was greater in the later. Therefore,
the proposed model (model 1 in Table 7) could be considered to be
stable and could be used for the estimation of forest biomass with
an accuracy of +47.93 t/ha.

The results of validation of the forest biomass estimation model
using joint texture ratio 1 (model 2 in Table 7) were very similar to
the two-date texture ratio (model 1 in Table 7). The adjusted r?
(0.87) and RMSE (31.75 t/ha) of the original model (model 2 in Ta-
ble 7) was more or less similar to the adjusted r? (from 0.84 to
0.89) and RMSE (from 29.19 to 32.07 t/ha) computed for the train-
ing data using LOOCV. The overall validation accuracy (adjusted
r? = 0.84 and RMSE = 41.46 t/ha) (Fig. 20) was worse than the ori-
ginal model accuracy (adjusted r? = 0.87 and RMSE = 31.75 t/ha)
but promising considering the high biomass level. However, the
validation accuracy (adjusted r? = 0.84 and RMSE = 41.46 t/ha) of
this model (model 2 in Table 7) was higher than the validation
accuracy (adjusted r?> = 0.78 and RMSE =47.93 t/ha) of model 1
(Table 7). The errors (residuals) of both the original model and

the validation data points were found to be distributed normally
(Fig. 21), and there was a strong relationship (r?> = 0.99) between
them (Fig. 21). This indicates that the proposed model for forest
biomass estimation using the joint texture ratio-1 (model 2 in Ta-
ble 7) was stable and it performed better than the two-date texture
ratio (model 1 in Table 7). This model has the ability to predict for-
est biomass using independent field data with an accuracy of
+41.46 t/ha.

The validation accuracy (adjusted r?> = 0.88 and RMSE = 35.69 t/
ha) (Fig. 22) of the proposed model (model 3 in Table 7) of forest
biomass estimation using the joint texture ratio-2 model was high-
er than the validation accuracy of the other two models (for model
1 adjusted r> = 0.78 and RMSE =47.93 t/ha, and for model 2 ad-
justed r> =0.84 & RMSE =41.46 t/ha). However, the validation
accuracy (adjusted r? = 0.88 and RMSE =35.69 t/ha) was worse
than the model accuracy (adjusted r?> = 0.90 and RMSE = 28.58 t/
ha). But the difference in accuracy was very small (adjusted
r?2 = 0.02 and RMSE = 7.16 t/ha) compared to the other two models
(adjusted r? difference for model 1 = 0.4 and model 2 = 0.05). Sim-
ilar to the other two models (model 1 and 2 in Table 7), errors of
both the model and the validation data points were normally dis-
tributed (Fig. 23) and very strongly correlated with each other
(Fig. 23). The lower difference in accuracy between model and val-
idation, and the strong relationships between the model and vali-
dation error indicated that the model using joint texture ratio-2
(model 3 in Table 7) for forest biomass estimation was robust
and outperformed the other two models (model 1 and 2 in Table 7),
and has potential for the forest biomass estimation with an accu-
racy of £35.69 t/ha.



Table 7

Results obtained from two-date dual polarization texture parameter combinations.

Data Model fitting parameters Fitting parameters for intercept and variables
r2 rgdj RMSE (t/ha) p-Level Variables name & intercept B Std. Err. of B p-Level Tol VIF EV Cl
Model 1: Two-date ratio of dual polarization texture parameters 0.86 0.83 37.43 .0005 Intercept 561.70 54.16 0.0005 4.12 1.000
Kurtosis_3 x 3p -39.18 5.32 0.0005 0.94 1.06 1.76 1.53
Amplitude Image_p -701.93 98.15 0.0005 065 153 1.20 1.85
Skewness_5 x 5p -249 082 0.0041 0.76 132 092 212
Homogeneity_5 x 5p 19.04 4.79 0.0002 046 216 066 250
VI_11 x 11p 6839  6.66 0.0005 034 294 062 257
Skewness_11 x 11p -6.90 1.49 0.0003 0.28 3.55 034 348
Kurtosis_11 x 11p -1549 3.86 0.0002 0.27 3.71 022 433
Angular Second Moment_5 x 5p -15.50 4.80 0.0024 049 2.03 0.15 5.25
GLDV Entropy_3 x 3p -11.72  4.05 0.0061 0.75 133 0.01 26.66
Model 2: Two-date joint texture ratio-1 090 087 31.75 .0005 Intercept 79.52 28.55 0.0082 5.22 1.00
GLDV Entropy_9 x 9p -57.85 23.95 0.0204 0.28 3.64 1.91 1.65
Inverse Difference _7 x 7p —39.81 9.96 0.0002 0.29 341 1.52 1.85
Mean_9 x 9p -161.86 31.62 0.0009 0.51 196 090 241
Kurtosis_5 x 5p -31.25 3.86 0.0005 059 1.68 050 3.24
Skewness _5 x 5 283 0.87 0.0024 044 228 040 3.62
Normalized Coefficient of Variation_11 x 11p 100.64 8.68 0.0005 0.25 4.01 0.24 4.64
Skewness_11 x 11p -13.93 1.34 0.0005 0.26 3.86 0.16 5.74
Variance_3 x 3p -14.41 2.06 0.0005 038 2.64 0.07 8.47
Inverse Difference _7 x 7 43.41 7.60 0.0001 035 2.88 0.05 1031
Mean Dev. from Mean _3 x 3 599 236 0.0151 048 2.07 0.02 16.50
Model 3: Two-date joint texture ratio-2 092 090 28.58 .0005 Intercept 42573  25.07 0.0005 4.65 1.00
GLDV_mean_9 x 9p 22.02 7.10 0.0035 037 267 1.70 1.66
Homogeneity_5 x 5p 27.61 3.67 0.0005 046 2.18 1.22 1.96
Amplitude Image —462.39 47.68 0.0005 0.67 149 1.02 213
Kurtosis_5 x 5 -1834 2.8 0.0005 0.82 122 054 293
Normalized Coefficient of Variation_11 x 11p 59.80 5.71 0.0005 046 220 041 3.38
Skewness _11 x 11p -857 093 0.0005 042 239 022 460
Contrast_5 x 5 1286  1.81 0.0005 0.23 437 0.15 5.64
VL3 x 3 -15.60 249 0.0005 045 224 007 8.09
GLDV Entropy_9 x 9 —-43.21 12.98 0.0018 025 396 002 1744
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Fig. 17. Relationships between observed and model predicted biomass using the ratio of two-date texture parameters and combination of single-two date ratio combinations.

Fig. 18. Relationships between observed and predicted values for validation using
LOOCV.

6. Discussion and conclusion

A wide range of results (adjusted r? from 0.22 to 0.90) was ob-
tained from the biomass modeling using four different processing
steps with the two-date PALSAR dataset. Performance improved
with the number of processing steps (Fig. 16) and about 88% vali-
dation accuracy with an RMSE =+ 35.69 t/ha at step 4 was obtained.
No such result has so far been reported in the literature using L-
band SAR in such high biomass conditions and this result suggests
there is great potential for the use of PALSAR in biomass
estimation.

The performance obtained using different combinations of
intensity data processing was low and inconsistent. This is in

Fig. 19. Relationships and distribution of model error and validation error using
LOOCV.

agreement with other researchers (Dobson et al., 1992; Rignot
et al., 1994; Foody et al., 1997) who found that the raw backscat-
tering coefficient does not correlate strongly with biomass because
of speckle noise and saturation problem. Although the ratio of
backscattering has often been found effective (Dobson et al.,
1995; Ranson and Sun, 1994; Harrell et al., 1997), our results did
not show this, probably because of the high biomass in this study
area which is far beyond the reported saturation point of L-band
SAR.

Texture parameters of HH and HV polarization data were found
to be more robust than raw SAR data, and HV texture polarization
more effective than HH texture polarization. The observed
improvement using texture parameters is not completely new
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Fig. 20. Relationships between observed and predicted value of validation using Fig. 22. Relationships between observed and predicted values for validation using
LOOCV. LOOCV.

Fig. 23. Relationships and distribution of model error and validation error using

Fig. 21. Relationships and distribution of model error and validation error using LOOCY

LOOCV.

and agrees with previous research (Luckman et al.,, 1997; Salas in many studies (Rauste et al., 1994; Ranson et al., 1995; Kasischke
et al.,, 2002; Kuplich et al., 2005; Champion et al., 2008). Also, the et al,, 1995; Mougin et al., 1999; Collins et al., 2009) is supported
better performance of HV than HH polarization SAR data reported by our findings.
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The use of both polarization texture parameters jointly in the
model with and without ratio improved the performance of bio-
mass estimation compared to any single polarization texture, prob-
ably as different polarizations provide complementary
information, as observed by Kasischke et al. (1997) and Rignot
et al. (1994), whereas the addition of texture parameters to this
information is able to reduce the inherent noise in the SAR data.
However, the texture parameter ratio model (in the form of HV/
HH) was found to be more effective than the model without ratio.
This is probably because ratio images combine both the comple-
mentary information from their use as independent parameters
without ratio, as well reduce topographic effects and forest type
structural differences. As a result the ratio is able to further in-
crease the performance from dual polarization texture parameters.

The highest performance of biomass estimation was reached
using the ratio of two-date dual polarization texture parameters
and a combination of single and two-date ratios together as inde-
pendent parameters in the model. This improvement in principle
agrees with previous findings for multi-date SAR research (Kurvo-
nen et al., 1999; Fransson and Israelsson, 1999) that the use of sev-
eral different dates of SAR by averaging or other means can provide
more reliable results than a single SAR image, by reduction of
speckle noise and other random errors. In summary, the improve-
ment of results using the combination of single and two-date dual
polarization texture image ratios compared to all previous process-
ing steps can be explained by a combination of complementarities
in the datasets and minimization of error due to image noise.

It should be noted that in almost all processing steps the date 2
(11 May, 2008) image provided better results than date 1 (26 Sep-
tember, 2009). Since the forest type in the study area is evergreen,
little structural change would be expected between May and Sep-
tember. However, climate data showed that two to three days be-
fore the date 1 (26 September, 2008) image acquisition very heavy
rainfall (in some places more than 150 mm) was observed, but only
slight rainfall (10-15 mm) was recorded before date 1 (11 May,
2008) image acquisition.

Although rainfall occurred before both of the image dates,
very heavy rainfall before date 1 (26 September, 2008) made
the surface very moist. Despite L-band SAR may be less sensitive
to soil moisture than C-band, we assume that the differences in
performance was due to influence of the surface moisture condi-
tions, and this agrees with other research (Harrell et al., 1995)
which reported poor relationships between ERS-1 data and tree
biomass during early summer when snow melt and precipitation
make the surface very moist, but increasing backscatter is ob-
served with increasing biomass in late winter when the surface
dries out.

The LOOCV method proved to be promising and validation accu-
racies (adjusted r?) of 0.78, 0.84 and 0.88 were obtained compared
to the model accuracies (adjusted r?) of 0.83, 0.87 and 0.90 from
the proposed three models (two-date ratio, joint ratio-1 and joint
ratio-2, respectively). The difference between the models and LOO-
CV validation accuracy was not very high and it was acceptable
considering the sample size and diversified forest condition.

This paper presents techniques which are able to achieve high
performance of biomass estimation (adjusted r?> = 0.90 for model
and 0.88 for validation) in a study area where biomass levels are
as high as 500 t/ha, whereas previous reported saturation levels
have been given as 60-70 t/ha for L-band SAR. This very strong per-
formance was achieved by combining four strategies which had al-
ready been used or suggested individually by other researchers.
These include the use of (i) a longer wavelength SAR sensor, (ii)
texture measurements, (iii) dual polarization SAR data and (iv)
two-date SAR data. The good results obtained from this research
are actually the outcome of appropriate image selection and pro-
cessing techniques together.

7. Recommendations for future work

Different types of forest biomass estimation models were pro-
posed and validated using the two-date dual polarizations of PAL-
SAR data. The proposed techniques have potential for forest
biomass estimation and may be used in similar field situations
although we believe that other texture combinations may give bet-
ter results in other forest conditions, as texture measurement de-
pends on the biophysical and environmental conditions of the
area of interest. Thus researchers may need to select others combi-
nations of texture parameters for their study area. However, the
processing presented here can be used as templates for future
work.

This research was based on dual polarization SAR data and the
relationships between SAR and ground-truth data were established
using stepwise multiple regression method. However, although our
data is not fully polarimetric, there are several other useful meth-
ods such as polarimetric interferometric (PollInSAR) model inver-
sion techniques for forest parameter estimation and the
associated 'Random Volume Over Ground’ class of models (Mette
et al., 2004; Cloude and Papathanassiou, 2003; Papathanassiou
and Cloude, 2001; Brandfass et al., 2001) which should be taken
into account in future studies, because PolInSAR processing does
not require assumptions concerning the relationship between
observables and parameters (e.g. a linear relationship in this study)
and can be applied in the absence of ground-truth data.
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