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TECHNICAL PAPER

Estimating surface visibility at Hong Kong from ground-based LIDAR,
sun photometer and operational MODIS products
Muhammad I. Shahzad,1,2,* Janet E. Nichol,1 Jun Wang,2 James R. Campbell,3 and
Pak W. Chan4
1The Hong Kong Polytechnic University, Department of Land Surveying and Geo-Informatics, Hung Hom, Hong Kong
2University of Nebraska, Department of Earth and Atmospheric Sciences, Lincoln, NE, USA
3Naval Research Laboratory, Monterey, CA, USA
4Hong Kong Observatory, Kowloon, Hong Kong⁄Please address correspondence to: Muhammad I. Shahzad, Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic
University, Hung Hom, Hong Kong; e-mail: imran.shahzad@connect.polyu.hk

Hong Kong’s surface visibility has decreased in recent years due to air pollution from rapid social and economic development in the
region. In addition to deteriorating health standards, reduced visibility disrupts routine civil and public operations, most notably
transportation and aviation. Regional estimates of visibility solved operationally using available ground and satellite-based estimates
of aerosol optical properties and vertical distribution may prove more effective than standard reliance on a few existing surface
visibility monitoring stations. Previous studies have demonstrated that such satellite measurements correlate well with near-surface
optical properties, despite these sensors do not consider range-resolved information and indirect parameterizations necessary to solve
relevant parameters. By expanding such analysis to include vertically resolved aerosol profile information from an autonomous
ground-based lidar instrument, this work develops six models for automated assessment of surface visibility. Regional visibility is
estimated using co-incident ground-based lidar, sun photometer, visibility meter, and MODerate-resolution maging Spectroradiometer
(MODIS) aerosol optical depth data sets. Using a 355 nm extinction coefficient profile solved from the lidar, MODIS AOD (aerosol
optical depth) is scaled down to the surface to generate a regional composite depiction of surface visibility. These results demonstrate
the potential for applying passive satellite depictions of broad-scale aerosol optical properties together with a ground-based surface
lidar and zenith-viewing sun photometer for improving quantitative assessments of visibility in a city such as Hong Kong.

Implications: The study presents methods to estimate surface level visibility using remote sensing techniques, thus reducing the
cost and effort required to estimate visibility at regional level. This helps to address environmental and health effects of ambient air
pollution related to visibility for areas with no existing air quality monitoring stations. Policy regulation and hazard assessments
impacting transportation and navigation can be improved by integrating the remotely estimated surface visibility with a real-time
environmental data network.

Introduction

Hong Kong’s skyline and mountain horizons are obscured
20% of the time due to reduced visibility (visual range [VR]
below 8 km; e.g., Chang and Koo, 1986; Lai and Sequeira,
2001). The percentage of hours with such reduced visibility
(excluding fog, rain, or mist) has risen from 2% in 1970 to
18% in 2004 (Hong Kong Observatory [HKO], 2005). This is
primarily the result of high aerosol particulate loading, with
mean annual aerosol optical depth (AOD) values exceeding
0.60 at 550 nm (Wu et al., 2005). Air quality in urban Hong
Kong is considered worse than in surrounding rural areas (Louie
et al., 2005), and, for context, is worse than most urbanized
coastal areas of eastern USA (Yuan et al., 2002).

Hong Kong’s declining visibility is closely related to local and
regional air pollution (Chan and Yao, 2008), as light extinction

correlates strongly with concentrations of respirable suspended
particles (RSPs; particles with diameter of less than 10 mm)
within the planetary boundary layer (PBL) (Chin, 1997; Lee
and Gervat, 1995; Sequeira and Lai, 1998). Optical properties
of these aerosols depend on their emission source (Cui et al.,
2011). Local anthropogenic activities, as well as aerosol particle
transport, most commonly in the form of sulfate (SO4) from
neighboring China, are primary contributors (Cheung et al.,
2005; Qun et al., 2009; Zhuang et al., 1999). Lai and Sequeira
(2001) show that NO2 and RSPs are responsible for 79% of light
extinction in Hong Kong. In comparison, Wan et al., (2011)
report a high correlation between visibility and PM10 (particulate
matterwith an aerodynamic diameter �10 mm) when the latter
decreases by 0.004 mg/m3 and with NO2 when NO2 decreases
from 0.02 to 0.05 mg/m3 in the nearby Pearl River Delta (PRD)
region during 2001 to 2008. Deteriorating visibility has
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prompted concern for health as well as transportation, aviation,
and other routine civil operations (Thach et al., 2010).

Several methods are available for surface-based measurements
of horizontal VR, including human operator estimates (Hyslop,
2009), transmissometer (Horvath, 1981), nephelometer (Horvath
and Kaller, 1994), teleradiometer (Watson, 2002; William, 1999),
aerosol speciation and parameterized estimates (Malm et al.,
1994; Jung et al., 2009; Bian, 2011), the use of digital cameras
(Bäumer et al., 2008), and use of linear regression of turbidity as
function of air mass (Peterson et al., 1981). Almost all of these
methods are difficult to deploy, maintain, and operate over a large
region (Babari et al., 2011). In Hong Kong, surface VR is mea-
sured operationally at five locations in and around Hong Kong’s
main islands by qualified weather observers, forward scatterering
radiometers, and transmissometers. This includes an urban site,
managed by the Hong Kong Observatory (HKO; at 22.301�N,
114.174�E) across Victoria Harbor, and in the outer suburbs at the
Hong Kong International Airport (HKIA; at 22.309�N,
113.922�E; Figure 1). Although these monitoring sites have con-
tributed a number of new and important data sets for better
characterizing the problem, they are not sufficient to cover all of
Hong Kong. Also, such estimates are representative only of a
specific sample of space or direction, and cannot be presumed
representative of adjacent regions (Anderson et al., 2003).

Efforts have been reported to supplement surface networks
with satellite remote sensing to estimate surface level atmo-
spheric VR (Kaufman and Fraser, 1983; Hadjimitsis et al.,
2010). Satellite remote sensing has been shown to improve
such efforts by using one or a combination of approaches.
Some relevant examples include (1) the use of solar albedo for
deriving geometric and optical thickness of fog from Advance
Very High Resolution Radiometer (AVHRR; Mishchenko et al.,
2003) and sonic detection and ranging (SODAR), including a

radiative transfer model for calculating the extinction coefficient
(Bendix, 1995); (2) the use of luminance and contrast from
satellite image in spatial and frequency domains derived from
radiative transfer models (Diner, 1985; Williams and Cogan,
1991); (3) atmospheric transmittance derived from satellite
AOD measurements (Hadjimitsis et al., 2010; Nichol et al.,
2010); and (4) the use of statistical regressions with different
combinations of band radiances to estimate VR (Fei et al., 2006).
However, these studies focus only on stratified layers of fog, and
all lack appropriate validation measurements for very clear or
highly polluted (i.e., high AOD) days/cases. Therefore, their use
for a highly polluted region like Hong Kong is untested.

Furthermore, passive aerosol remote sensors do not resolve
aerosol distributions vertically with reliably high resolution (in
the order of 1–100 m), whereas space-borne lidar instruments, of
which the National Aeronautics and Space Administration
(NASA) Cloud Aerosol Lidar with Orthogonal Polarization
instrument (CALIOP; Winker et al., 2010) is currently the only
operational sensor, do offer this measurement. However,
CALIOP’s limited sensor swath width and orbital track makes
these data difficult to apply practically in a routine/daily opera-
tional setting relative to other passive sensors. Instead, we con-
sider the opportunity to combine the benefits of regional passive
satellite aerosol observations with surface-based lidar profiling
to better constrain local VR estimates.

Therefore, in this study, the vertical profile of aerosol particle
scattering and distribution is estimated from a single-channel
elastic-scattering lidar at Hong Kong Polytechnic University
(HKPU; at 22.30�N, 114.197�E). Six algorithms are thendescribed
and tested, where regional VR is estimated using coincident
ground-based lidar, sun photometer, and AOD data sets of the
Moderate-resolution maging Spectroradiometer (MODIS;
Ackerman et al., 1998). Using the 355 nm extinction coefficient

Figure 1. Locations of the visibility monitoring stations in Hong Kong (HKO and HKPU are 0.5 km apart).
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profile derived from the lidar measurements at one location,
MODIS AOD data are scaled down to the surface to generate a
regional composite depictionof surfaceVR.Weassume thevertical
distribution of aerosol particle mass concentration over the Hong
Kong studydomain is constant relative to its horizontal distribution.
We evaluate this assumption by comparing our results with inde-
pendent VR measurements at locations where lidar data do not
exist. By applying this technique, it is possible to optimize informa-
tion froma relatively limited number of available groundvisibilities
to estimate VR across the entire area from passive remote sensing
data sets, which provide the necessary spatial coverage.

Research Tools

Study area

The Hong Kong domain studied here represents an aggregate
surface area of 1104 km2, located in a subtropical region sur-
rounded by the South China Sea to the east, south, and west, and
bordering Shenzhen, China, to the north. The maximum altitude
above mean sea level (MSL) is 957 m and approximately 40% of
the land area is preserved as country park lands. Hong Kong
experiences local as well as regional transboundary air pollution.
In the warm summer months, southwesterly winds bring fresh
marine air, resulting in a relatively clean, hot, and humid atmo-
sphere (Cheng et al., 2006). From October to April, cold air
masses from South China transport regional pollutants (Cheng
et al., 2006), making air quality poor. Local visibility is highest in
the hot humid summer, with southerly winds from South China
Sea, and lowest in the winter and spring, with dry northerly winds
from continental China (Chang and Koo, 1986; Mui et al., 2009).

Data used

This study considers hourly average data sets collected with a
355 nm elastic scattering lidar instrument, a multichannel sun
photometer, deployed as part of NASA’s federated Aerosol
Robotic Network (AERONET; Holben et al., 1998), and a visibi-
lity meter (Vaisala, Finland), all installed on the urban campus of
HKPU at 22.30�N, 114.197�E. Data are evaluated from April
2011, beginning with the availability of routine lidar observations
at HKPU, through October 2011, corresponding with the avail-
ability of quality-assured Level 2 AERONET products that are
cloud screened as well as pre- and post-field calibrated. However,
in order to sample a larger number of MODIS data for validating
our method, we extend the study period beyond October 2011 to
September 2012 using only Level 1.5 AERONET data, which are
cloud screened but without a final postoperation calibration
applied. Overall, though, only six data points were used from
Level 1.5 data of AERONET for our validation study.

MODIS. MODIS was first launched on the Terra satellite in
1999 in a descending node that passes the equator at 1030 local
time. A second MODIS, on the Aqua platform, was launched in
2001 in an ascending node, which passes the equator at 1:30 p.m.
local time. With 36 wavebands at 250 m, 500 m, and 1 km
resolution, MODIS can be used for atmospheric, oceanic, and
land studies at both local and global scales (e.g., Remer et al.,
2005; Wong et al., 2011). The MODIS Science Team generates

specific value-added data products describing aerosol physical
and optical properties, including ocean color, land cover, and fire
locations (Schaaf et al., 2002; Moody et al., 2008). The current
MODIS operational products (MOD04—from Terra and
MYD04—from Aqua), with 10 km horizontal resolution, repre-
sent Collection 5 (Levy et al., 2007). The AOD from MOD04
and MYD04 are extracted for the HKPU (tMU) and HKIA (tMA)
sites using spatial windows of 5 � 5 pixels, which are then
compared with hourly average values of data from AERONET,
the lidar, and visibility meter. These temporal and spatial win-
dows were designed in accordance with Anderson et al. (2003),
who report a significant correlation (r > 0.90) between AOD
measurements from ground, air, and space using a temporal
windowof less than 3 hr and a spatial windowof less than 60 km.

AERONET data. The AERONET sun photometer database
includes AOD over a range of wavelengths (0.35–1.05 µm), with
an accuracy of �0.015 (Rainwater and Gregory, 2005).
Instruments are generally calibrated annually. Typically, measure-
ments are collected and reported at 15 min resolution. Value-
added Level 2 products (i.e., aside from AOD) include aerosol
single-scattering albedo, size distribution, fine and coarse mode
fractions, phase function, and asymmetric function (Dubovik and
King, 2000). AERONET data arewidely used for the validation of
satellite AOD retrievals and model simulations (Yu et al., 2003).

We note recent work suggesting that Level 2 AERONET
screening algorithms may be limited by optically thin cirrus
clouds, most common in tropical and subtropical locales, thus
leading to a positive-definite AOD bias of 0.03–0.06 when such
clouds go unscreened (Chew et al., 2011). In Singapore, for
instance, this can approach 35% of the Level 2 sample. In this
study, however, we apply the Level 2 archive directly and presume
the cloud-screening procedures are robust. Despite the presence of
lidar measurements, during daytime, when the passive radiometric
observations used here are available, the Atmospheric Lidar
System (ALS; Lolli et al., 2011) proves insensitive to cloud
presence at heights and temperatures most commonly associated
with optically thin tropical cirrus. Thus, no consideration of
potential cloud bias in the AERONET sample is possible.

LIDAR data. The ALS at HKPU collects data at 15 m and 1
min spatial and temporal resolutions, respectively. The ALS is a
single-channel elastic backscatter lidar, operated at 355 nm, with
an outgoing energy pulse near 16 µJ at 20 Hz. The ALS data used
in this study do not account for Rayleigh scattering and gas and
particle absorption. Signals are processed for a relative back-
scattering coefficient (b; m�1sr�1), which can be interpreted for
significant aerosol particle layers, such as the surface-detached
mixed aerosol layer (referred to as mixing layer—low; ML-Low)
and diffuse elevated layers decoupled from the primary surface
layer and advecting within the free troposphere (ML-High).
Further processing can yield an estimated extinction coefficient
(sLS; m

�1), where AOD (tLU) is either constrained and extinc-
tion solved iteratively through an inversion solution to the lidar
equation (Fernald, 1984; Klett, 1985), or by setting the relation-
ship between extinction and backscatter coefficients constant
within an assumed turbid layer and again constraining total
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transmission to solve extinction bin-by-bin from the top of the
layer to the surface.

In this work, the latter technique for solving the extinction is
applied using built-in software provided by the ALS manufac-
turer, which includes a predefined set of extinction-to-
backscatter ratios. The extinction-to-backscatter ratio can fluc-
tuate depending on the region of interest, particularly in
Southeast Asia (Campbell et al., 2012). At Hong Kong, it is
found to fluctuate seasonally between 18 and 44 sr at 532 nm
(He, 2006). This led us to choose a value ratio of 36 sr
(e.g., Ackerman et al., 1998), thus reflecting urban pollution as
the primary aerosol type regionally. Note that overlap of the ALS
system is achieved at a range approximating 170 m. Thus, in
order to estimate near-surface VR effectively, we use data as
close to the surface as possible and extrapolate downward
(described below). Therefore, the hourly average extinction
coefficient (sLU) at 355 nm is retrieved from the LIDAR mea-
surements at heights between 75 and 150 m.

Surface visibility data. AVaisala visibility meter is collocated
with the sun photometer and lidar at HKPU. This meter uses a
forward-scattering method to estimate visual range at 875 nm.
Intensity of infrared light scattered at 33� is measured and con-
verted to VR. VR readings from this station (VHKPU) are used
below to construct model estimates. VR readings from a similar

visibility meter deployed at HKIA (VHKIA) are used for valida-
tion. Human observations of visibility are also important for
such a study but could not be used, as none were available for
HKPU.

Descriptive statistics

Histograms depicting hourly averages of the parameters
(VHKPU, VHKIA, ML-High, ML-Low, sLU, tAU, and tLU) used
by the various models for estimating VR are shown in Figure 2.
Log-normal distributions are observed in all except for ML-
High, VHKPU, and VHKIA, which exhibit bimodal distributions.
Summary statistics for these hourly averages, including sample
size, mean, median, standard deviation, and maximum/mini-
mum values, are given in Table 1. The highest values for ML-
High and ML-Low during the study period were 2.82 and 2.51
km, respectively. The lowest values were 0.36 and 0.23 km,
respectively. On average, the majority of aerosol particles were
present within a finite layer near the surface. This is suggested by
the observation that ML-High (ML-Low) remained below 1 km
31.01% (60.01%) of the time. The average value ofsLU was 0.22
km�1, with maximum (minimum) values of 0.72 km�1 (0.16
km�1) that correspond to VR of 5.43 km (24.45 km) according
to Koschmieder’s equation. Although tLU and tAU exhibit log-
normal distributions, the lidar-derived AOD, which is based on

Figure 2. Frequency distribution hourly averages of (a) ML-Low, (b) ML-High, (c) AOD fromAERONET, (d) AOD fromALS, (e) visibility at HKIA, (f) visibility at
HKPU, and (g) extinction coefficient from ALS for height between 75 and 150 m.
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an assumption of constant extinction-to-backscatter ratio, was
low compared with AERONET retrievals. Average values of tLU
and tAU were 0.28 and 0.39, respectively. These smaller values
of tLU can be reconciled by using eq 4 to represent VHKPU.

We note that VR between 20 and 30 km was more frequent
than VR below 20 km or above 30 km for both HKIA and
HKPU. The peak frequency at HKPU was �11�12, and that at
HKIA was �15 and standard deviation and mean values for
VHKPU and VHKIA are significantly different (P value ¼ 0.00),
with values of VHKPU and VHKIA of 21.77 � 10.41 and 24.28 �
11.39 km, respectively. This supports our assumption of spatial
variability of aerosol mass concentrations in Hong Kong.

Scatter plots of VHKPU versus sLU, tLU, ML-Low, tAU, and
VHKIA are shown in Figure 3, and each shows significant correla-
tion (P values <0.05), thus indicating the relevance of applying
these parameters to estimate VR. Studies involving the light

extinction properties of aerosol particles have shown similarly
good correlations (R2 ¼ 0.82–0.85) between ML height and
AOD when ML height is relatively low (Liu et al., 2009; Zieger
et al., 2011) and the atmosphere is relatively stable. As noted by
Xue et al (2010), light scattering increases as the height of the ML
decreases because a lower ML reduces the volume of the air
containing aerosol particles. Thus, increasing the aerosol loading
per unit volume and hence the scattering of light. This likely
explains the positive correlation (R ¼ 0.70) observed for VHKPU

with ML-Low. Therefore, ML height can be approximated as a
scaling height. A possible inverse relationship for VHKPU andsLU,
tLU, and tAU occurs, since an increase in the aerosol concentration
increases the scattering and absorption. This results in increased
extinction of light and hence decreases visibility, which has been
shown in various studies over HongKong (e.g.,Wang et al., 2003;
Chan and Yao, 2008; Nichol et al., 2010; Wan et al., 2011). The

Table 1. Summary statistics for hourly averages of visibility, LIDAR AOD, AERONETAOD, extinction coefficient, and ML heights presenting sample size (N),
mean, median, standard deviation (SD), and maximum/minimum (Max/Min)

Parameter N Mean Median SD Max Min

VHKPU at 875 nm (km) 489 21.77 20.82 10.41 46.17 3.965
VHKIA at 875 nm (km) 492 24.28 25.79 11.39 44.03 4.28
tLU at 550 nm 183 0.28 0.23 0.24 1.41 0.01
tAU at 550 nm 492 0.39 0.28 0.30 1.80 0.04
sLU at 335 nm (km�1) 181 0.22 0.19 0.16 0.72 0.008
ZH (km) 216 1.56 1.55 0.72 2.82 0.36
ZL (km) 216 0.97 0.76 0.64 2.51 0.23

Notes: ZH ¼ ML-High; ZL ¼ ML-Low.

Figure 3. Relationship between visibility at HKPU derived from visibility meter at the 875 nm wavelength and (a) AOD from AERONET, (b) AOD from ALS, (c)
ML-Low, and (d) extinction coefficient from ALS for height between 75 and 150 m at HKPU. Here R is correlation and N is the number of data points.
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difference in the number of data points for ML heights, sLU, and
tLU derived fromALS is due to the use of a constant extinction-to-
backscatter ratio. This setting caused some retrievals to fail, which
is a likely reflection of its true variance over time. Hence, tLU and
sLU were not retrieved for every day.

Methodology

ALS extinction coefficient profiles

Although ALS data are collected at 15 m and 1 min resolu-
tion, integrated profiles can improve the signal-to-noise ratio
(SNR) (e.g., Campbell et al., 2008). Therefore, hourly averages
of the extinction coefficient profile at 75 m resolution were
computed. The arithmetic mean (sðt,rÞ) and standard deviation
(�sðt,rÞ) for each 1 min and 15 m profile were first computed
after resolving the profile to 75 m resolution (i.e., 5 bin averages
at 15 m resolution). Next, the hourly average of 75 m and 1 min
extinction coefficient profiles was derived by computing, once
again the arithmetic mean of each 75 m and 1 min profile
available in an hour (eq 1). The relative uncertainty in the hourly
averaged profile was then computed using eq 2.

sLUðt,rÞ ¼
Pt¼59

t¼0 stðrÞ
N

(1)

�sLUðt,rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPt¼59

t¼0 ½�stðrÞ�2
q

N
(2)

Here, N is the total number of profiles in an hour and sLU

and�sLU are the hourly averaged profiles of extinction coeffi-
cient and their corresponding relative uncertainty at 75 m
resolution. Ratio of eqs 1 and 2 give the SNR for the corre-
sponding profile, as

SNRðrÞ ¼ sLUðrÞ
�sLUðrÞ (3)

To extract a representative ALS surface extinction coefficient
(scaled surface extinction coefficient, sS, at 355 nm) from
signals measured within the overlap region of the lidar, some
correction or scaling is necessary due to possible uncertainty
corresponding to the overlap region and use of a static ratio of
extinction and backscatter (as described above) of 36 sr. To
overcome this problem, the ratio of tAU to tLU are used in
order to constrain the lidar equation and scale sS relative to
AERONET as

sS ¼ tAU
tLU

� sLUðat r ¼ 75mÞ (4)

where sLU is reported at 355 nm. Note here that tAU and tLU are
scaled up to 550 nm using corresponding values of Ångstrom
exponent (a440 nm�675 nm and a340 nm�500 nm) from the AERONET
Level 2 data sets, since tAU and tAU are measured at 500 and 355
nm from AERONET and ALS, respectively.

Nonlinear regression analysis

It is assumed that sS and VHKPU will exhibit an inverse
empirical relationship, in a form similar to Koschmieder’s law
(Koschmieder, 1924), that can be applied to the entire Hong
Kong domain under our assumption of constant and persistent
aerosol vertical distributions. Therefore, a formula is proposed to
estimate VHKPU using sS as

VHKPU ¼ a

sS þ b
(5)

where a (unitless) and b (km�1) are constants that can be esti-
mated using a non-linear regression fit between sS and VHKPU.
The values of parameters a and bwill be different from the 3.912
and 0.0 km�1 prescribed by Koschmieder’s equation, which
correspond to an assumed visual contrast of (0.02) and extinc-
tion of light due to gases as well as particles, whereas sS

accounts for extinction of light due to particles in air only.
Also, VHKPU accounts for scattering due to particles only.
Hence, values of a and b also account for absorption due to
NO2 as well as brown and black carbon, which are important
contributors to visibility reduction in an urban atmosphere.

Modeled extinction coefficient

As noted in the previous section (Figure 2e and f), there is
significant spatial variability in VR between HKIA and HKPU,
such that a measurement of VR in one location cannot be
representative of another location. Therefore, in this study six
models are developed (Table 2) to use MODIS data to spatially
extrapolate either sLU measurements (Models 1–3) or VR mea-
surements (Models 5–6) at HKPU to the HKIA.MODIS data are
used to account for the spatial variability in VR and it is assumed
that this reduces uncertainty in the extrapolation of VRmeasured
in one location to another. Also, since errors are reported in
MODIS and LIDAR data, it is not known if inclusion of these

Table 2. Proposed models for estimating extinction coefficient of MODIS at
HKIA (sMA) and VHKIA

Model 1 sMA ¼ tMA

tLU
� sLU

Model 2 sMA ¼ tMA

tAU
� sLU

Model 3 sMA ¼ tMA

tMU
� sLU

Model 4 (a and b) sMA ¼ tMA
ZðL;HÞ

Model 5 Vmod
HKIA ¼ tMA

tMU
� VHKPU

Model 6 Vmod
HKIA ¼ tMA

tAU
� VHKPU

Model 7 VHKIA ¼ VHKPU

Notes: sMA ¼ MODIS extinction coefficient of at HKIA
tMA ¼ MODIS AOD at HKIA
tMU ¼ MODIS AOD at HKPU
tAU ¼ AERONETAOD at HKPU
tLU ¼ LIDAR AOD at HKPU
ZðL;HÞ ¼ Low- and High-ML heights at HKPU
VHKPU ¼ VR from visibility meter at HKPU
VHKIA ¼ VR from visibility meter at HKIA.
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data adds useful information to the estimates. To evaluate the
usefulness of the MODIS data in estimating VR, a “reference
model” (Model 7) is also developed where VR at HKIA and
HKPU are compared.

Models 1–4 estimate MODIS-derived surface level extinction
coefficient (sMA) at 355 nm by using AOD and VR from the
HKPU ground station along with MODIS data at HKIA and
HKPU (tMA—MODIS AOD at HKIA and tMU—MODIS AOD
at HKPU; each included in Table 1). Models 1–3 use AOD from
the ALS and sun photometer along with sLU to compute sMA.
However Model 4 uses only ML heights retrieved from the lidar
to scale the MODIS AOD and simultaneously compute the near-
surface extinction coefficient. This is reasonable since on aver-
age the majority of AOD measured at Hong Kong is the result of
particle scattering below ML-Low (He et al., 2008; Campbell
et al., 2012). Similar to eq 5, sMA from Models 1–4 is used to
estimate Vmod

HKIA at 875 nm wavelength as

Vmod
HKIA ¼ a

sMA þ b
(6)

where values of a and b are the same as in eq 5. As mentioned
above, eq 5 uses sS at 355 nm to derive VHKPU at 875 nm.
Therefore, sMA should also be at 355 nm. Hence, sMA from
Model 4 was also scaled to 355 nm using Ångstrom exponent
values from AERONET.

To study the effect of possible uncertainties involved in
retrieval of ALS products due to use of a constant extinction to
backscatter ratio, Models 5 and 6 were developed to be indepen-
dent of the lidar. They use AOD and VHKPU reported at wave-
lengths of 550 and 875 nm, respectively, and they directly report
Vmod
HKIA at 875 nm without involving eqs 4 and 5. Equation 5 and

all models are based on data from HKPU, and all are validated
using data at HKIA. This allows an independent validation of
algorithm performance at HKIA using in situ VR (VHKIA).

Results and Discussion

Model fitting

A nonlinear regression model was fit to the data (eq 5) for the
relationship between VHKPU and sS (Figure 4). The value of the
first parameter, a, is approximately 2 times greater than that
prescribed by Koschmieder’s equation (8.02 compared with
3.912). Koschmieder’s values assume a visual contrast threshold
of the eye at 0.02, where absorption and scattering of the optical
medium correspond to the 500 nm wavelength. However, two of
the terms in eq 5 are derived at different wavelengths: the sS in
eq 5 is derived at the ultraviolet 355 nmwavelength and visibility
at HKPU (VHKPU) is derived from a forward scattering instru-
ment, considering only scattering in the infrared region at 875
nm. Additionally, the calculated values fora comply with the fact
that for a given particle with single-scattering albedo of 1 (SSA
¼ 1), the scattering cross-section can increase significantly
(Hansen and Travis, 1974) (i.e., approx. 2 times in the case of
SO4—a major pollutant reported for Hong Kong; Cheung et al.,
2005; Qun et al., 2009; Zhuang et al., 1999) when the wave-
length is changed from 550 to 335 nm. A lager value of b (of 0.2

km�1) is also observed in the model, which may have one or two
possible causes, including the extinction of light due to absorp-
tion by gases and particles, or due to the regression analyses
which are based on least squares regression. This does not
account for errors in the dependent variable, i.e., VHKPU, which
will result in overestimated intercept value, i.e., b. The fitting of
the model with VHKIA was able to explain only 50% of the
variability in VHKPU, possibly due to the use of the lidar extinc-
tion coefficient from the overlap region where reliability may be
an issue (Kovalev and Eichinger, 2004).

Validation

Regression coefficients a and b from eq 5were used to estimate
the modeled VR for Models 1–4, whereas Models 5–6 (Table 2)
report themodeledVR alone. Eachmodel requires a valid retrieval
of MODIS AOD over HKIA. For the entire study period, there
were only 46 suitable MODIS images, and only 14 of these (8
from 2011 and 6 from 2012) could be matched to concurrent lidar
data for validation. The models were tuned using data from only
HKPU. Modeled VR for those 14 days along with visibility meter
readings at HKIA are shown in Figure 5. The error bars for VHKIA
correspond to the 20% expected uncertainty of the visibility meter
(from its manual), which is consistent with Annex 3 of the
International Civil Aviation Organization (ICAO) that suggests
that an uncertainty of �20% in estimated VR is acceptable when
actual VR is above 1.5 km.

Models 2 and 3 give the best estimate of surface visibilities,
followed by Models 5 and 6. Most of the models based on data
from HKPU are able to reproduce variations in VHKIA. This
suggests that the models devised for Hong Kong provide reliable
VR estimates without any bias for clear and polluted days,
whereas previous studies (Diner, 1985; Fei et al., 2006;
Otterman, 1985; Williams and Cogan, 1991) have overestimated
and underestimated those conditions respectively. In fact, the

Figure 4. Nonlinear regression fit for scaled extinction coefficient and visibility
at HKPU. Estimated values of the regression coefficients a and b and N are
reported along with root mean square error (RMSE), mean absolute deviation
(MAD), and coefficient of determination (R2) for 165 measured values of
visibility at HKPU and scaled surface extinction coefficient.
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modeled visibilities from Models 2, 3, 5, and 6 all fall within 1
standard deviation (6.17 km) of VHKIA for validation days.

Model 1 underestimates VR most of the time, primarily
because AOD estimates from the ALS are found to be biased
low relative to AERONET. This is the reason that when tAU
replaces tLU in Model 2, the modeled VR is fairly close to VHKIA

for most days. A similar argument is also valid for Model 3,
whose performance is similar to Model 2.

Models 4a and 4b underestimate VHKIA most of time. There
are two primary reasons for this. The first is that the atmosphere
was not well mixed for days with underestimated modeled
VR. The second is that Models 4a and 4b depend on ML heights
estimated from the ALS at HKPU. ML heights were derived
from the lidar extinction profile based on a constant extinction-
to-backscatter ratio, and we have seen that tLU is lower than tAU.
Hence, the retrieved vertical distribution of AOD from ALS will
also be lower and this influences the computation of ML. Results
for Models 4a and 4b may suggest that underestimated ML
heights caused overestimation in corresponding sMA and
hence decrease the modeled VR.

It is noted that Models 1–4 are unable to estimate VR on
26 May 2011 and 31 May 2011 when VHKIA is much lower
than on other days. Also, Models 1 and 4 underestimate
VHKIA for most days, which are thought to be due to uncer-
tainties associated with ALS data. Therefore, Models 5 and
6, which are independent of ALS data, were introduced, as
they isolate the effect of possible uncertainties in sLU

because both depend on AOD from MODIS and
AERONET along with surface VR at HKPU. Both gave
estimated VHKIA better than Models 2 and 3. In addition,
Model 6 was also able to estimate VHKIA for both 26 May
2011 and 31 May 2011, whereas Model 5 was only able to
estimate VHKIA for 31 May 2011, in addition to other days.

No other model was able to estimate VHKIA for 26 May 2011
and 31 May 2011. Hence, the highest correlation between
modeled and ground visibilities is found for these two mod-
els (Figure 6), which, overall, are best able to reproduce
variations of VHKIA.

Further assessments of the respective models are shown by
scatter plots of modeled VR versus ground VR estimated at
HKIA (Figure 6). VR estimates using Models 5 and 6 are con-
centrated closest to the 1:1 line. Hence, if we rank the models
based on R2, R, root mean square error (RMSE), and mean
absolute deviation (MAD), Model 5 performs best, followed by
Models 6 and 3.

Model results greatly improve (Table 3) if we remove 26 May
2011 and 31May 2011 from thevalidation, based on unusually low
values of VHKIA corresponding to low MODIS AOD for these
anomalous days at HKIA. MODIS AOD for these 2 days was
0.18 (0.17) and 0.20 (0.35), respectively, at HKIA (HKPU),
whereas AERONET AOD was 0.33 and 0.32, respectively, at
HKPU. Values of tMA and VHKIA are low for these days relative
to sMU and VHKPU. This shows unusually low visibilities at HKIA
when tMA was also low. Comparing values of R2, R, RMSE, and
MAD,Model 3 replacesModel 5 as the strongest performer.Again,
the only difference between Models 3 and 5 (Table 1) is the use of
surface extinction from theALS. This once again shows that better-
quality lidar data can result in better estimates of surface VR.

From Table 1, Models 4a and 4b depend on concurrent values
ofML heights andMODIS AOD, whereasModel 5 and 6 depend
on concurrent values of VHKPU and MODIS AOD. Therefore,
being independent of tMU and sLU, a larger validation data set
for Models 4–6 can be arranged separately. Hence, Models 4–6
were further analyzed using respective extended validation data
sets with corresponding numbers of data points (N) of 16, 16, 28,
and 29, respectively (Figure 7). Model 5 still shows the best
result, followed byModel 6. This demonstrates the robustness of
the respective models. For a region where the vertical spatial
distribution of aerosol physical properties can be considered
constant, Models 3 and 5 are more applicable. Therefore, passive
satellite remote sensing has the potential to estimate the surface
VR to within an uncertainty of 20%, or that prescribed for a
relatively simple visibility meter.

Although HKIA and HKPU are 35 km apart, there is a
significant difference in the visibilities at these locations
(Figures 2e, f and 6h). This suggests that a very dense ground-
based visibility monitoring network is necessary in order to
monitor the visibility of the entire Hong Kong domain. This is
the reason that the reference model (Model 7) was unable to
represent VR at HKIA (Figure 6). Models 2, 3, 5, and 6 using
MODIS data performed better than the reference model, which
indicates that inclusion of MODIS data is necessary for estimat-
ing VR at regional level. It also shows the merits of the proposed
methods for estimating VR. Hence, passive satellite remote
sensing techniques can be applied to optimize the use of a
ground-based network and to fill gaps where no instruments
are deployed. This will potentially help in reducing costs in
monitoring regional air quality, since VR estimates can be used
as a surrogate for mass concentration of fine particulates (PM2.5;
PMwith an aerodynamic diameter�2.5mm) (Chow et al., 2002;
Vajanapoom et al., 2001).

Figure 5. MODIS derived modeled visibility at HKIA from the proposed models
listed in Table 1 and actual visibility (histogram bars) from visibility meter at
HKIA. In addition to MODIS AOD, Model 1–4 uses AOD, ML heights, as well as
extinction coefficients from ground-based instruments at HKPU, whereas Models
5 and 6 use visibility readings from visibility meter at HKPU. Error bars are�20%
of the visibility at HKIA from the manual of visibility meter.
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Model selection

The predictive power of a model is indicated by the uncertain-
ties in its inputs as well as the deviation of its output from actual
values. It is good to note that the outputs of the proposed models
are within �20% of the ground values. However, uncertainties in
the input parameters applied have reduced the performance of
some models. Input parameters with the highest uncertainties can
be attributed to the lidar data, and the use of a static extinction-to-

backscatter ratio, necessary for estimating extinction, and the
scaling of signal to the surface due to optical overlap of the
instrument. In contrast, AOD from AERONET is considered to
have the least uncertainty, although we again stress that the poten-
tial impact of optically thin cloud contamination of these data, and
MODIS for that matter, was not considered, due to the limited
profiling range during daytime of the ALS. VR measurements
from the visibility meter are also prone to uncertainty, since they
do not consider light absorption factors. However, the primary

Figure 6. Scatter plot of VHKIA and MODIS derived visibility at HKIA for each proposed model (Table 1). Dashed line displays the 1:1 line and dashed rectangle
encompasses the data for 26 May 2011 and 31 May 2011. R2, RMSE, and MAD are described in Figure 4.
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source of uncertainty involved in the estimation of VR in our
models is due to the error term corresponding with the nonlinear
regression step, since it is found to explain only 50% of the
variations in sS and VHKPU. A larger data set of sS and VHKPU

is needed to further improve the regression fitting.
To further the skill of the proposed models, a Taylor diagram

(Taylor, 2001) was built (Figure 8). Taylor diagrams depict a
statistical summary of how well patterns of estimated and
observed values match based on their correlation, standard
deviation, and root mean square error. The radial distance from
the origin at “0.0” represents the normalized standard deviation.
“Obs” represents the statistics of observed visibilities at
HKIA. RMS differences for the modeled visibilities are propor-
tional to the radial distances from the origin at “Obs” (units same
as normalized standard deviation). Normalized Pearson’s corre-
lations between observed and modeled visibilities are

represented along the azimuthal position along the outer hemi-
sphere. The color bar scales the bias (%) in each model.

Pattern statistics describing the six modeled visibilities com-
pared with observed visibilities at HKIA show that Models 2, 3,
5, and 6 outperform Models 1, 4a and 4b. The correlations for
Models 5 and 6 are higher than for Models 2 and 3, whereas
normalized standard deviations for Models 2, 3, and 6 are similar
and higher for Model 5. Models 2 and 3 can be improved by
using ALS data of better quality. However, the percentage biases
for Models 5 and 3 are less than for Models 2 and 6. Overall,
Model 5 appears to be the best model for the estimation of VR
using MODIS AOD at HKPU and HKIA, along with VR from
HKPU (Figure 8). Performance of these models is expected to
further improve by retrieving AOD fromMODIS at a high spatial
resolution such as 3 � 3 km2, which is planned for MODIS
Collection 6 products (Levy et al., 2013).

Table 3. Comparison of model’s performances before and after removal of data for 26 May 2011 and 31 May 2011

Before Removal After Removal

Model R2 RMSE R MAD R2 RMSE R MAD

Model 1 0.46 11.24 �0.68 8.91 0.28 11.45 �0.53 8.80
Model 2 0.09 5.78 0.30 4.08 0.49 3.35 0.70 2.65
Model 3 0.17 4.75 0.41 3.59 0.44 2.96 0.66 2.48
Model 4a 0.00 13.05 �0.07 12.12 0.22 13.29 0.46 12.25
Model 4b 0.03 10.50 �0.17 9.16 0.05 9.85 0.22 8.40
Model 5 0.42 4.63 0.65 3.79 0.59 4.77 0.77 3.95
Model 6 0.48 5.22 0.69 4.47 0.49 5.61 0.63 5.03
Model 7 0.29 4.73 0.54 4.06 0.59 4.67 0.77 3.89

Note: Italicized values represent those of the best model.

Figure 7. Scatter plot of VHKIA and MODIS derived visibility at HKIA for Models 4–6 with extended validation data sets. Dashed line displays the 1:1 line. R2,
RMSE, and MAD are described in Figure 4 and N is the available number of data points for validation.
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Conclusion

Deteriorating visibility at Hong Kong due to increase in
regional air pollution raises concerns for local air quality and
health standards. Existing networks monitoring local visibility
are not sufficient. Therefore, this study was designed to model
and estimate of VR using column-integrated aerosol physical
properties from MODIS, ground-based lidar, and AERONET
sun photometer measurements of aerosol optical depth. Six
models are developed under the assumption that the vertical
distribution of aerosol physical properties for the study domain
is constant regionally on any particular day, but that the aerosol
amount may vary spatiotemporally and the shape of aerosol
vertical profile may vary temporally. Results suggest that models
utilizing satellite observations together with the near-surface
extinction coefficient from a visibility meter and ALS deployed
at HKPU are reliable to estimate the VR 35 km away at HKIA.

VR estimates from the proposed models were found to be
within 20% of ground values. The models did not overestimate
or underestimate VR for clean and/or polluted days, as exhibited
by previous studies of visibility modeling. Results may be
further improved by model tuning and experience with a larger
data set and over a longer study period. Results of the study
demonstrate the potential for applying passive satellite depic-
tions of broad-scale aerosol optical properties, and suggest that
passive remote sensing exhibits the potential for enhancing the
performance of preexisting ground-level visibility networks.
Further, the integration of data from only one ground station
and satellite images enables the estimation of surface level VR
for an area up to 35 km away from the station, which is within
reasonable spatiotemporal correlation lengths for aerosol optical
properties evaluated previously (Anderson et al., 2003).

Results of this study can help devise methodologies for gov-
ernments to more efficiently estimate VR at regional level. In
addition to improvement in estimation of VR, this work can also
lead to better understanding of environmental and health effects

due to ambient air quality in terms of atmospheric visibility for
areas with no existing air pollution monitoring stations. The
integration of the remotely estimated VR into a real-time data-
base network, such as Infusing Satellite Data into Environmental
Applications (IDEA) by National Oceanic and Atmospheric
Administration (NOAA) and Environment/ Environmental
Central Facility (ENVF) Environmental and Atmospheric
Database in Hong Kong, can help civil authorities both in
improving policy regulation and for control of transportation
and navigation. With that in mind, our continuing goal is to
facilitate the implementation and further testing of such infra-
structure in order to meeting the growing air quality-related
issues faced by one of the world’s largest metropolitan cities.
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