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Abstract
Real-time acquisition and analysis of three-dimensional (3D) 
human body kinematics are essential in many applications. 
In this paper, we present a real-time photogrammetric system 
consisting of a stereo pair of red-green-blue (RGB) cameras. 
The system incorporates a multi-threaded and graphics 
processing unit (GPU)-accelerated solution for real-time 
extraction of 3D human kinematics. A deep learning ap-
proach is adopted to automatically extract two-dimensional 
(2D) human body features, which are then converted to 
3D features based on photogrammetric processing, includ-
ing dense image matching and triangulation. The multi-
threading scheme and GPU-acceleration enable real-time 
acquisition and monitoring of 3D human body kinematics. 
Experimental analysis verified that the system processing 
rate reached ~18 frames per second. The effective detec-
tion distance reached 15 m, with a geometric accuracy of 
better than 1% of the distance within a range of 12 m. The 
real-time measurement accuracy for human body kinemat-
ics ranged from 0.8% to 7.5%. The results suggest that the 
proposed system is capable of real-time acquisition and 
monitoring of 3D human kinematics with favorable perfor-
mance, showing great potential for various applications.

Introduction
Real-time capture and response for human locomotion at a 
large scale is of great importance for various applications, 
such as monitoring actions of patients in physical rehabilita-
tion (Karunarathne et al. 2014), enhancing safe conditions 
of workers in industrial robotics (Seo et al. 2015), analyzing 
the movements of athletes (Gholami et al. 2019), and human-
computer interaction in virtual reality (Jaimes and Sebe 2007). 
Because such applications benefit from accurate extraction and 
analysis of 3D human body kinematics, real-time photogram-
metric systems capable of these types of measurements have 
been extensively researched in recent years.

With the advances of computer processing capabilities, 
human pose recognition has been shifted from single image-
based (Agarwal and Triggs 2006; Shotton et al. 2011) to image 
sequences (Zhou et al. 2016), and further evolved to dynamic 
human pose recognition from video sequences (Wang et al. 

2019). Nevertheless, the complexity of these algorithms pro-
hibited the real-time processing of human post recognition. 
The recent development of smart cameras (Carraro et al. 2016) 
and red-green-blue-depth (RGB-D) sensors (Tang et al. 2020; Wu 
et al. 2019; Tang et al. 2016), which can directly capture 3D 
information in a given scenario, has enabled cost-efficient es-
timation and tracking of 3D human body posture in real time. 
However, the sensors are limited by the workable distance, 
field-of-view (FOV), and reliability. In contrast, ordinary RGB 
cameras are capable of capturing large-scale scenarios with a 
large FOV. Previous studies using RGB cameras only recognized 
human posture in 2D (Shotton et al. 2011; Jalal and Kim 2014), 
resulting in the loss of vital information in the depth dimen-
sion. Multi-view stereo techniques (Seitz et al. 2018) enabled 
retrieving 3D information from 2D images using photogram-
metric approaches, and 3D human body kinematics can be 
subsequently extracted from the retrieved 3D information. 
However, 3D reconstruction of large-scale scenes using dense 
image matching (Haala 2013) is time-consuming, especially 
for systems without hardware acceleration. The complexity 
of dense image matching algorithms requires balancing the 
efficiency and quality of the matching results, which impedes 
the possibility of real-time processing.

The advent of the central processing unit (CPU) with multi-
threaded capabilities and the development of the GPU-accel-
eration technologies make real-time computations possible. 
This paper presents a cost-effective photogrammetric system 
consisting of a stereo pair of RGB cameras. The system utilizes 
multi-threading and GPU-acceleration techniques as well as 
deep learning to extract and measure 3D human body features 
at a large scale in real-time, which enable further analysis of 
3D human kinematics, such as step length, moving speed, 
arm angle, knee angle, etc., from the video sequence.

The remainder of this paper is organized into four sections. 
Section “Related Works” consists of reviews of related works, 
and the section “System Development” provides detailed 
descriptions of the developed system. The experimental 
evaluations are presented in the section “System Implemen-
tation and Evaluation”, and the section “Conclusions and 
Discussion” consists of concluding remarks and suggestions 
for future work.

Related Works
2D Human Body Feature Extraction
A good algorithm for human body feature extraction can 
improve the efficiency and accuracy of human body tracking 
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and monitoring system. Early studies of human-computer 
interaction (Jaimes and Sebe 2007) introduced variable com-
puter vision algorithms, such as body, gesture, gaze, and facial 
expression recognition algorithms, into several crossroad 
research areas, including psychology, artificial intelligence, 
and many others. These algorithms turned 2D human body 
feature detection into an intensive research field and applied 
to areas such as the facial feature point-recognition method 
(Xiong and De la Torre 2013) and single- or multiple-person 
posture recognition (Zhou et al. 2013). Xiong and De la Torre 
(2013) applied the facial feature recognition method and 
supervised descent method (SDM) to an image sequence. The 
SDM was able to recognize the facial features in the image se-
quence with favorable accuracy. Zhou et al. (2013) presented 
a gesture tracking and recognition algorithm, which allowed 
near real-time processing. Their experiments indicated that 
the running frame rate reached five frames per second (fps).

Recently, the accelerated advancement of GPU technol-
ogy and the evolution of multithreading-capable CPUs have 
led to the popularity of deep learning approaches (Ranjan et 
al. 2017), such as mask regional-based convolutional neural 
networks (R-CNNs) (Abdulla 2017), OpenPose (Cao et al. 2018), 
and regional multi-person pose estimation (RMPE) (Fang et 
al. 2017). Ranjan et al. (2017) presented an algorithm called 
HyperFace, which allowed simultaneous face detection and 
posture estimation using deep CNN. However, HyperFace 
required three seconds to process one image, which limited 
its potential for real-time human feature extraction. OpenPose 
and RMPE have also made it possible to evaluate and extract 
2D features of human postures in real time. Fang et al. (2017) 
used the benchmark Max Planck Institute for Informatics 
(MPII) human pose data set (Andriluka et al. 2014) and Mi-
crosoft Common Objects in COntext (MSCOCO) data sets (Veit 
et al. 2016) to compare popular leading-edge human pose 
estimators based on the mean average precision (mAP) score. 
Table 1 provides an overview of these popular human pose es-
timators. According to Fang et al. (2017), deep learning-based 
object-detection and pose-evaluation algorithms accurately 
obtained the 2D key points of human posture. Among the 
assessed algorithms, RMPE was the most reliable and accurate 
multi-person pose estimator with an overall mAP of 80+ and 
a processing rate of 20+ (fps). The OpenPose algorithm had an 
mAP of almost 70+ but only achieved approximately 10+ fps 
running on the same platform (Cao et al. 2018). Due to high 
process efficiency and accuracy, deep learning approaches are 
particularly suitable for real-time 2D human posture evalua-
tion and feature extraction.

3D Human Posture Feature Extraction
In recent years, the rapid developments of computer hardware 
(D’Apuzzo 2002) and affordable RGB-D cameras (Zimmermann 
et al. 2018) have expanded the study of human posture evalu-
ation and feature extraction from 2D to 3D space. D’Apuzzo 
(2002) proposed a method using photogrammetry to recover 
3D human body features from synchronized video sequences 
captured from multiple cameras at different locations and dy-
namically tracked their trajectories. The creation of a 3D hu-
man kinematic descriptor (Zanfir et al. 2013) moved the study 

of 3D human body gesture recognition and feature extraction 
from part-based posture retrieval methods (Zimmermann and 
Brox 2017; Sridhar et al. 2013) to whole-body human pose 
estimation (Srivastav et al. 2018). Even though these studies 
have brought human feature detection into 3D space, they 
were in general time-consuming and had not been imple-
mented for real-time 3D human feature detection.

RGB-D cameras offer 3D information in a direct way and 
have been used for extracting 3D human posture and features 
in recent years. For example, Carraro et al. (2018) and Huang 
and Nguyen (2019) used the OpenPose to RGB-D camera to 
obtain 3D human feature points by integrating the 2D fea-
tures extracted by deep learning with the depth information 
measured by the depth sensor. Srivastav et al. (2018) used an 
RGB-D camera to obtain 3D human body key points for indoor 
posture-estimation and tracking. However, the use of RGB-D 
cameras is limited by their short measurement ranges and 
narrow FOVs (Haggag et al. 2013).

This paper presents a real-time photogrammetric system 
consisting of a stereo pair of RGB cameras. The system incor-
porates a novel multi-threading strategy and GPU acceleration 
as well as an advanced deep learning method to extract and 
measure 3D human kinematics in real-time. The main contri-
butions of the presented work are as follows:
1.	 In order to achieve real-time processing, the system adopts 

four threads, responsible for 3D scene reconstruction, 
human feature extraction, kinematic information calcula-
tion, and result visualization, respectively. Each thread 
works independently without waiting for other threads to 
complete their tasks, and thus the processing latencies of 
the procedures are reduced. In addition, for the thread of 
3D scene reconstruction, which is a bottleneck problem 
and requires the most computations, a GPU-accelerated 
strategy is used to achieve real-time efficiency of 3D 
reconstruction.

2.	 To avoid complicated 3D computations, we develop a 
strategy that combines a 2D human body skeleton extrac-
tion algorithm with the projection relationships between 
2D and 3D spaces. A mature deep learning method is ad-
opted to ensure the reliability and efficiency of 2D human 
feature extraction, and then the 2D results are converted 
into 3D space based on the projection relationships, en-
abling 3D human body kinematic analysis.

System Development
Multi-Threading Design
The real-time photogrammetric system had four threads. Each 
thread performed as an individual model that handled differ-
ent tasks, as shown in Figure 1. Thread 1 loaded the stereo 
RGB images with timestamps and known orientation parame-
ters, and then delivered images to semi-global matching (SGM) 
(Hirschmuller 2007) to generate a disparity map. A 3D map 
was retrieved by triangulation based on the disparities and 
orientation parameters of the camera. A GPU-acceleration solu-
tion was also used in the first thread to speed up the 3D scene 
reconstruction processing rate. Thread 2 first extracted 2D 

Table 1. Comparison of 2D human detection and tracking algorithms (all values are mAP scores).

Head Shoulder Elbow Wrist Hip Knee Ankle Total

Fang et al. (2017) (RMPE) 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7
Iqbal and Gall (2016) 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1
Insafutdinov et al. (2016) (DeeperCut) 78.4 72.5 60.2 51.0 57.2 52.0 45.4 59.5
Levinkov et al. (2017) 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6
Insafutdinov et al. (2017) (ArtTrack) 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3
Cao et al. (2018) (OpenPose) 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6
Newell et al. (2017) 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5
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human body skeletons from the left-view images using RMPE 
and extended the 2D skeletons to 3D body features based on 
the 3D map array produced by thread 1. Thread 3 computed 
the following human kinematic parameters: moving velocity, 
step length, and joint motion angles. These parameters were 
based on 3D body features. The products of each thread were 
stored in the same queue for data exchange, and the results 
were loaded into thread 4 from the queue for the system visu-
alization in real-time.

3D Scene Reconstruction from Stereo RGB Images with GPU Acceleration
This section describes the algorithms used in thread 1 for 
dense image matching and the triangulation process with 
GPU acceleration. The GPU-accelerated procedure is shown 
in Figure 2. First, stereo RGB images with known interior 
and exterior orientation parameters were loaded from the 
stereo camera and stored in the host (CPU). The device (GPU) 
then copied the stereo RGB images from the host and split 
them into left-view and right-view images. The dense im-
age matching algorithm 
SGM and triangulation 
process were performed 
on the GPU with an ac-
celeration solution for 
reconstructing the 3D 
information in real-time. 
Simultaneously, the left-
view image and disparity 
map obtained from SGM 
were stitched together 
as the background image 
prepared for the visual-
ization in thread 4.

GPU-Accelerated SGM for 
Disparity Estimation
A GPU-accelerated SGM 
method was applied 
for the real-time stereo 
estimation of the dispar-
ity map. Figure 2 shows 

the generation of a consistent disparity map. Two cost items, 
matching cost and smoothed cost, were computed in the GPU 
device. The matching cost measures the probability that two 
pixels on the left- and right-view images correspond to the 
same point in the object space. Features were first extracted 
from the left- and right-view images, and a similarity compar-
ison was used to generate a local-matching cost and potential 
disparity for each pixel. A center-symmetric census transform 
(CSCT) (Hernandez-Juarez et al. 2016) configured with a fixed-
sized (e.g., 9 × 7) window was used to extract the features 
by moving the window on the left- and right-view images, 
respectively. The extracted features were presented as bit-
vectors. The similarity between two corresponding pixels in 
the left- and right-view images was defined as the Hamming 
distance between their CSCT bit-vector features.

The smoothed cost was introduced to deal with nonunique 
or incorrect correspondences of similarity, resulting in an 
inaccurate estimation of disparity. In SGM, the smoothed cost 
was computed by considering the similarity between neigh-
boring points and disparities along paths across the image. 
The global solution was approximated as one-dimensional 
minimization problems along these paths. For each path 
direction, SGM aggregated a cost that considered the cost of 
neighboring points and disparities. After the disparities of all 
pixels were estimated, a 3 × 3 median filter (Brownrigg 1984) 
was applied to remove outliers.

GPUs are massively parallel devices containing tens of 
streaming multiprocessors (SMs), and vector computation op-
erations are highly utilized and pipelined in SMs to optimize 
the computational efficiency. The compute unified device 
architecture (CUDA) programming model (Nvidia 2019) allows 
for defining a massive number of threads deployed in SMs of 
the same program code. The SGM was coded using a two-level 
identifier in CUDA to specialize in each thread for disparities 
estimation. The code in this research was deployed following 
the method of Hernandez-Juarez et al. (2016).

Triangulation for Generation of 3D Map
Triangulation was used to generate a 3D map (point cloud) 
from the disparity derived from the stereo camera. Figure 3 
shows the geometry of the stereo camera system. C1 and C2 are 
the perspective centers of the left and right cameras, respec-
tively, and IP1 and IP2 are the respective image planes. f1 and 
f2 are the focal lengths of the left and right cameras. They are 
the same for the camera system used in this research.

Figure 3 illustrates the geometric relationships between 
the object point P and the stereo cameras C1 and C2, and the 
colinear relationship amongst the object point, image point, 

Figure 1. Workflow of the real-time photogrammetric system.

Figure 2. GPU-accelerated procedure of dense image matching and 3D map generation.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING	 May 2021 	 365

http://my.asprs.org


and camera perspective center (e.g., P, p1, and C1; or P, p2, and 
C2). Based on the geometric relationships, the 3D coordinates 
of the point P can be calculated using the following equation 
(Kaehler and Bradski 2016):
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where (Xp, Yp, Zp) are the coordinates of the point P in object 
space. (u1, v1) are the image coordinates of P in the left image.
(Cx1, Cy1) are the coordinates of the principal point in the left 
image. f1 is the focal length of the left camera. b is the baseline 
between the left and right cameras, and d is the disparity as 
denoted by u1 – u2. It should be noted that Equation 1 is used 
here instead of the complex collinearity equations for the 
purpose of more efficient calculation. Equation 1 is based on 
the epipolar geometry, which 
can be derived from the col-
linearity equations (Fraser 
1997; Gruen and Beyer 2001), 
assuming a fixed relationship 
between the left and right 
cameras. In the actual ex-
periments, the camera system 
used has been calibrated by 
the manufacturer already. The 
focal length of the camera, 
the position of the principal 
point, and lens distortions are 
provided. The images have 
been rectified based on the 
lens distortion parameters. A 
fundamental matrix defining 
the relative orientation of the 
left and right cameras is also 
provided, which allows the 
determination of epipolar 
geometry between the left and 
right cameras.

Based on Equation 1, each 
pixel in the disparity map 
can be transferred to a 3D 
point in the object space. The 
calculated 3D points can be 
used to generate a 3D map, 
and the RGB information of 
the 3D points can be obtained 
from the corresponding 2D 
coordinates for visualization 
purposes. Figure 4 shows an 
experimental result of 3D 
map visualization.

Extraction of 3D Human Body 
Features
Thread 2 handled the ex-
traction of 3D human body 
features. The system took ad-
vantage of the mature 2D body 
skeleton extraction algorithm, 
RMPE (AlphaPose) (Fang et 
al. 2017), and then extended 
the 2D body skeleton into 
3D body features based on 
the projection relationship 
between the image space 
and object space. RMPE is an 

open-source CNN-based multi-person pose estimator used in 
conventional pictorial structure models for posture estima-
tion. RMPE has been evaluated on two standard multi-person 
data sets with large occlusion cases: MPII (Andriluka et al. 
2014) and MSCOCO 2016 Keypoints Challenge data set (Veit 
et al. 2016). MPII data set contains more than 28 000 training 
samples for single person pose estimation, while the MSCOCO 
data set consists of 105 698 training and around 80 000 test-
ing human instances. The results of RMPE on MPII data sets 
indicated that it achieved an average accuracy of 72 mAP on 
identifying difficult joints such as wrists, elbows, ankles, and 
knees. The results of RMPE on MSCOCO data sets also proved 
that RMPE achieved state-of-the-art performance compared with 
other popular detectors (Fang et al. 2017). Since RMPE has been 
trained extensively on large data sets and performed well in 
identifying human body features, this research adopted it for 
real-time 2D human feature detection. The pretrained RMPE 
yields 17 default key joint points representing human body 

Figure 3. Illustration of geometric triangulation of the stereo camera system.

Figure 4. Disparity map converted to a 3D map. (a) Disparity map generated by SGM. (b)– (d) 
Colored point clouds are displayed from different perspectives.
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parts (Figure 5). The key joint points and their corresponding 
human body parts are listed in Table 2.

The 2D body skeletons extracted from the images using 
RMPE are represented in Equations 2, 3, and 4:

	
E S S Sk={ }, , ,1 2  	

(2)

	 S j i m m S Ei= ≤ ≤{ } ≤ ≤ ∈| , ,0 0 16 	 (3)

	 j x y i mi i i=( ) ≤ ≤, , ,0 	 (4)

where E
–
 is a set of human body skeletons Si

–
(i∈{1,2, …, k}) of k 

people detected by RMPE in the image. Each skeleton S is a set 
of 2D joint points ji(i∈{1,2, …, m}) that contain 2D coordinates 
(xi, yi), which correspond to the left-view image. m is the total 
number of body parts listed in 
Table 2. Each pixel in a 3D map 
contains both 2D image coordi-
nates and 3D coordinates.

The 2D body skeletons were 
converted to 3D body features by 
finding the 3D coordinates cor-
responding to the 2D joint points 
from the 3D map using the 2D 
image coordinates as the index. 
Thus, a set of 3D body features 
containing depth information was 
derived at this stage and saved 
in the queue for further analysis. 
These 3D body features were used 
to evaluate human kinematics, 
which will be discussed in the 
next section.

Analysis and Visualisation of 3D Human 
Kinematics
Threads 1 and 2 worked continu-
ously with the frames loaded from 
the stereo camera. The 3D body 
features extracted from a series of 
stereo camera frames then facilitat-
ed the kinematic analysis of a 3D 
human body over time in thread 3. 
This study focused on typical 3D human kinematics, includ-
ing the velocity of movement (moving speed and direction), 
step length, knee flexion angle, and arm swing angles. Table 3 
lists detailed descriptions of the considered human kinemat-
ics based on the default 17 key joint points (Table 2).

The human center of mass is maintained or altered close to 
the midpoint of the left and right hips (Vlutters et al. 2016). 
Therefore, the midpoint of the left and right hips was used 
to calculate moving speed and direction. The moving speed 
was calculated based on the 3D coordinates of the midpoint 
at the initial and final positions of a person’s movement dur-
ing a time interval. The moving direction was treated based 
on trigonometry that movement can be in any direction in a 
360° arc starting from the direction in which the person faces 
the camera. The 360° were divided into groups to represent 
different directions. The moving direction in this system was 
classified into four directions: forward, backward, left, and 
right (Figure 6). In Figure 6, Pi (i = 0) indicates the possible 
initial position, and Pi (i = 1, 2, 3, 4) illustrates the possible 
final positions in each direction in the next frame. The direc-
tion was determined by calculating the angle qi between the 
vector from an initial position to a final position and the XY-
plane of the camera system based on the 3D coordinates of 
two hips. The step length was expressed as the vector length 
from one ankle to the other. The system calculated the step 
length using the 3D coordinates of both ankles while calculat-
ing the direction and speed of movement.

Human joint motion measurements include knee pressure 
angle and arm swing angle. The latter was quantified into two 
indices: upper-arm angle and elbow angle. The calculation 
based on the geometry is shown in Figure 7. The knee flexion 
angle was calculated using the angle between the knee-angle 
and knee-hip vectors in 3D coordinates. The upper-arm angle 
was represented by the angle between the shoulder-elbow and 
shoulder-hip vectors. The elbow angle was calculated as the 
angle between the elbow-shoulder and elbow-wrist vectors.

The visualization was performed by an individual thread 
(thread 4) that loaded all of the information saved in the 
queue and displayed it on the screen. Once the threading 
detected that the queue was full of the stitching and 3D maps 
generated in thread 1, the 3D body features extended from 
the 2D skeleton in thread 2 and the kinematic results com-
puted from the 3D body features in thread 3, it automatically 

Figure 5. Default 2D skeletons of human body parts by RMPE.

Table 2. Order number of  
human body parts.

Order No. Body Part

0 Nose

1 Left eye

2 Right eye

3 Left ear

4 Right ear

5 Left shoulder

6 Right shoulder

7 Left elbow

8 Right elbow

9 Left wrist

10 Right wrist

11 Left hip

12 Right hip

13 Left knee

14 Right knee

15 Left ankle

16 Right ankle

Table 3. 3D human kinematic measurements considered in 
thread 3.

Name of 
Measurement Description

Body Parts 
Used

Body 
Part No. 

Moving 
velocity

A vector quantity that 
measures the position 
changes in a time interval, 
including moving speed 
and direction.

Left and  
right hip

11, 12

Step 
length

The distance covered 
when people start walking 
and take one step.

Left and  
right ankle

15, 16

Knee flexion 
angle

A measurement of knee 
joint motion when people 
are moving.

Left and  
right hip

11, 12

Left and  
right knee

13, 14

Left and  
right ankle

15, 16

Arm swing 
angle

An essential index of the 
human moving pattern, 
including the upper-arm 
angle and elbow angle.

Left and right 
shoulder

5, 6

Left and  
right elbow

7, 8

Left and  
right wrist

9, 10
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displayed all of the re-
sults by thread 4 in a 
window. As shown in 
Figure 8, the background 
is the stitching image 
with the left-view image 
of the camera and colored 
disparity map. Red colors 
on the disparity map 
indicate objects closer 
to the camera, whereas 
darker blue colors repre-
sent objects further away 
from the camera. Each 
joint is connected by dif-
ferent-colored lines. The 
distance of each body 
joint was loaded from 3D 
information in the queue 
and drawn on the left 
side of the background 
beside each body joint 
using 2D coordinates. All 
kinematic results were 
loaded from the queue 
and displayed on the 
colored disparity map for 
real-time monitoring of human locomotion.

System Implementation and Evaluation
Hardware Configuration of the System
The camera system used in this research is a ZED camera, 
which includes a stereo pair of RGB cameras of the same 
model on the same mainboard. The baseline between the 
two cameras is 12 cm, and each camera has a horizontal FOV 
of 90° and a vertical FOV of 60°. The left and right cameras 
each have a focal length of 5.6 mm. The image resolution is 
672 × 376 pixels for each camera, with a pixel size of 4 µm. 
The camera system was calibrated by the manufacturer. The 
camera interior orientation parameters, including the focal 
length, offset of the principal point, and lens distortions, and 
a fundamental matrix defining the relative orientation of the 
stereo cameras, are provided and ready for use. We used a 
local coordinate system in the experiment with the origin 
at the perspective center of the left camera, X-axis along the 
baseline, Y-axis pointing downwards, and Z-axis pointing to 
the range direction (see Figure 3). The camera system was run 
on a computer equipped with two NVIDIA RTX 2080Ti graphics 
cards, 64 GB of RAM, and two 12-core CPUs.

Evaluation of the System Capacity
The capabilities of the developed system were evaluated by 
assessing the processing rate and effective detection distance 
of a person moving in front of the stereo camera. During the 
assessment, 6000 frames were captured within 300 seconds 

Figure 6. The geometric model of human moving direction. (a) The possible initial position and final 
position of a locomotory action. (b) Geometry between an initial position and each possible final position.

Figure 7. Geometric model of joint motion monitoring. 
(a) Body parts used in joint motion monitoring. For the 
corresponding order and name, refer to Table 1. (b)–(d) 
Geometric model for calculating elbow angle, knee flexion 
angle, and upper-arm angle.

Figure 8. Visualization of the real-time photogrammetric system for human kinematics.

368	 May 2021 	 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

http://my.asprs.org


(Figure 9). The implementation of all threads reached ~18 fps 
or above with an image resolution of 672 × 376 pixels. The 
average processing rate of this system was 17.8 fps. Figure 9a 
illustrates the processing time of each frame from thread 1 to 
thread 4. According to Figure 9a, the processing rate some-
times exceeded 20 fps. This occurred when the person moved 
so fast that a ghosting effect appeared on the correspond-
ing frames, or the illumination was so weak that the person 
barely disappeared from the screen. As a result, RMPE failed to 
extract the 2D human skeletons in the above situations. In re-
sponse to such situations, thread 2 skipped the current frame 
and processed the next frame directly, resulting in a moder-
ate uplift in frame rate. The entire assessment took 6000 
frames (Figure 9a), and 
in general, the developed 
system achieved real-time 
processing during the 
assessment.

The system achieved 
an effective measure-
ment distance of ~15 
m, based on assessing a 
person moving back and 
forth from near to far 
along the optical axis of 
the left camera. During 
the evaluation, when the 
person left the camera 
view and returned along 
the same path, the system 
recorded all distance 
values from the person’s 
waist, defined as the 
midpoint between the 
left and right hips, during 
this movement. As shown 
in Figure 9b, when the 
person moved ~1.5 m, the 
system was able to extract 
the 3D body features of 
the left and right hips 
and started to compute 
the corresponding 3D 
coordinates. When the 
person moved more than 
15.7 m away from the 
camera, the system could 
not measure the dis-
tance because the person 
became too small on the 
screen to be detected by 
the RMPE. As the per-
son began to move back 
towards the camera and 
moved within 14.2 m, the 
system was able to extract 
the 3D human body fea-
tures again and simulta-
neously calculated the 
distance until the person 
moved to a distance of 
less than 1.1 m from the 
camera. Measurements 
were unstable starting 
at 14.2 m, whereas the 
dead zone for close-range 
measurements was from 
~1.1 m to ~1.5 m. Thus, 

the effective measurement range was ~1.5 m to ~15 m, which 
covers a large scale of scenes.

Accuracy Evaluation of the 3D Human Body Kinematics
Distance Accuracy
To evaluate the accuracy of the distance measurements 
achieved by the system over a specific resolution, we had 
a person standing still in front of the camera at different 
distances (Figure 10). The distance accuracy was assessed by 
comparing the measured distances between the person and 
the camera to the ground truth. As shown in Figure 10b, the 
system captured 1000 frames of the person when the person 
was standing still in front of the camera at distances of 2.3 m, 

Figure 9. Efficiency assessment results of the real-time photogrammetric system. (a) Frame rate 
records of the system. (b) Effective measurement distance assessment results.

Figure 10. Evaluation of distance measurement accuracy. (a) A person standing still in front 
of the camera for evaluating the accuracy of the measurements. (b) Measurements of people 
standing in front of the camera at different distances.
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4.1 m, 12 m, and 15 m. Table 4 lists the measurement aver-
ages. According to Table 4, the measurements of the system 
were close to the ground truth. When the person was 2.3 m 
and 4.1 m away from the camera, the respective root-mean-
square errors (RMSEs) were 0.4 cm and 2.6 cm, respectively. 
The errors were 0.2% and 0.6%, respectively. As the person 
moved to 12 m, the measurements began to become unstable. 
The RMSE increased to 8.7 cm, and the error became 0.7%. 
When the person stood 15 m away from the camera, the mea-
surements were even more erratic. The RMSE increased to 47.9 
cm, and the error rose to 3.2%. Because the effective measure-
ment range was ~1.5 m to 15 m (see the section “Evaluation 
of the System Capacity”), the measurements at 15 m were not 
detected on each frame. Overall, this system provided 3D hu-
man body measurements with a geometric accuracy of better 
than 1% of the distance within the distance range of 12 m.

Accuracy of Human Body Kinematics
The human moving direction was assessed by recording a 
person moving in four directions relative to the camera: left, 
right, forward, and backward. Figure 11 shows the method to 
evaluate the moving direction. Figure 11a shows the initial 

Figure 11. Results of monitoring human movement direction. The direction of movement is determined relative to the 
position of the camera. (a) The initial position of the human. (b) Identified result of moving left. (c) Identified result of moving 
right. (d) Identified result of moving forward. (e) Identified result of moving backward.

Table 4. Assessment of system measurement accuracy.

Distance (m) Mean of Measurements (m) RMSE (m) Error (%)

2.3 2.3 0.004 0.2
4.1 4.1 0.026 0.6
12.0 12.1 0.087 0.7
15.0 15.1 0.479 3.2

Table 5. Statistic results of moving direction identification.

Figure 11 
panel

Expected 
Behavior

Test 
Times

Average
θ (°)

Average 
Speed 
(cm/s)

Accuracy of 
Correct 

Identification (%)

(a) Standing still 30 0.2 0 93

(b) Moving left 30 88.1 52 87

(c) Moving right 30 -89.7 55 90

(d)
Moving 
forward

30 -10.2 43 83

(e)
Moving 

backward
30 -2.4 61 93
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position of the person, and Figures 11b–11e display the moni-
toring results of the person moving in four different direc-
tions, with moving speed computed in real time.

The identification of moving direction was performed fol-
lowing the geometry shown in Figure 6. We evaluated each 
direction and repeated the measurements 30 times for each 
direction. The results are listed in Table 5. According to the 
results, the identified moving direction is generally consistent 
with the expected behavior in each direction, with an accu-
racy of over 83%. Figure 11 shows examples of the results.

Table 6 and Figure 12 present the kinematic analysis 
results, including step length, knee angles, elbow angles, and 
upper-arm swing angles, measured and recorded from 1000 
frames by letting a person stand in front of the camera a while. 
Ground truth data were manually measured by a ruler for the 
step length and a protractor for the angles. An RMSE of 0.3 cm 

Table 6. Analysis results of kinematic applications.

Kinematic 
Application

Mean of 
Measurements

Ground 
Truth RMSE

Error 
(%)

Step length (cm) 32.6 33.1 0.3 0.8

Knee angle (°)

  Left 169.7 176.0 6.3 3.6

  Right 170.4 176.0 5.7 3.2

Elbow angle (°)

  Left 164.1 161.0 5.4 3.4

  Right 166.4 160.0 7.1 4.4

Upper-arm angle (°)

  Left 33.6 35.0 2.6 7.3

  Right 32.9 31.0 2.3 7.5

Figure 12. Kinematic analysis of system measurements. (a) 1000-frame measurements of step length, knee flexion angles, and 
arm swing angles. (b) The system-measured kinematic results of a person standing still in front of the camera for a moment.
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is calculated for measured step length with an error of 0.8%. 
The left and right knee angles fluctuate slightly around 170°, 
with RMSEs of 6.3° and 5.7°, respectively. The error remained at 
about 3%. The elbow and upper-arm angle measurements are 
unstable due to the high illumination at their positions on the 
image. This uncertainty results in an inaccuracy of the RMPE 
in extracting the 2D features and 3D feature conversion. The 
mean of the elbow angle measurements on both sides hovers 
at 164.1° and 166.4°, respectively. The RMSE was 5.4° and 7.1°, 
respectively, with an error of less than 5% for both. These val-
ues are relatively stable overall. The RMSE and errors of the left 
and right upper-arm angles are 2.6° (error 7.3%) and 2.3° (error 
7.5%). This result indicates that the measured angles were 
slightly discrepant relative to the ground truth value.

Conclusions and Discussion
This paper proposed a novel real-time photogrammetric 
system for 3D human body feature extraction with potential 
applications for human kinematics. The run-time frame rate of 
all frameworks, including 3D map generation, 2D and 3D hu-
man body feature extraction, and human kinematic analysis, 
was improved by multi-threading on the CPU and CUDA pro-
gramming on the GPU. The 3D map was derived from dispari-
ties using the GPU-accelerated SGM method and photogramme-
try method. Human body features in 2D and 3D were extracted 
using the deep-learning-based RMPE method and were run in 
an individual thread. Several geometric models were intro-
duced as an example of human kinematic analysis.

The experimental results presented in this paper quantita-
tively evaluate the efficiency and accuracy of each measure-
ment for human kinematic analysis. The process rate (pose 
framerate) reached ~18 fps. The effective detection distance 
reached 15 m, with a geometric accuracy of better than 1% 
of the distance within a range of 12 m. The accuracy for 
real-time measurement of human body kinematics ranged 
from 0.8% to 7.5%. Our system achieved large-scale 3D hu-
man body feature detection. The integration of deep learn-
ing methods let the system accurately recognize 3D human 
body features for human kinematic analysis. With the help of 
multi-threading and GPU-acceleration technology, this system 
improved the running framerate and achieved real-time 3D 
human monitoring at a large scale.

There are some limitations in the experiments. The RMPE 
failed to detect the 2D human features when the person was 
moving very fast (a ghosting effect appeared on the screen) or 
when the illumination was dark (the person almost disap-
peared from the screen). Similarly, the light intensity in the 
environment was not constant, and the SGM did not accurately 
obtain the disparity value in a very high-lighting environment, 
such as an area near a lamp, or low-lighting environments, 
such as shadows. The 3D information was not extracted in 
these cases. Moreover, 3D body features were not extracted if 
a person was standing more than 15 m from the camera. At 
this distance, the person was so small in the image that the 
2D human detection algorithm was unable to extract human 
skeletons. These problems can be improved by optimizing the 
algorithms to support higher image resolutions. The clearer 
outline of a person in a higher-resolution image allows the 
deep learning method to recognize the body features at farther 
distances. It should be noted that the current system is only 
able to process image sequences of a resolution of 672 × 376 
pixels in real-time. With proper optimization of the software 
in our future works, real-time processing of image sequences 
of higher resolutions can be expected. It should also be noted 
that the moving directions that can be identified in the current 
system only allow four main directions. The algorithms will 

be further improved in our future work to allow the identifica-
tion of more sophisticated moving directions.

In this study, although several applications of 3D human 
kinematics, including joint angles, movement directions, etc., 
were selected for demonstration and evaluation of their ac-
curacy, the system was not limited to these applications. We 
expect that this study provides an insight into the potential 
applications of real-time 3D photogrammetry. We also hope 
that this system would be integrated into a portable device 
that could extend real-time photogrammetry to a wider range 
of scientific fields and industries in the future.
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