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Abstract
Multiple sensors are commonly used for three-dimensional 
(3D)-mapping or robotic-vision applications, as they provide 
a larger field of view and sufficient observations to fulfill 
frame-registration and map-updating tasks. However, the data 
sequences generated by multiple sensors can be inconsistent 
and contain significant time drift. In this paper, we describe 
the trajectory drift–compensated strategy that we designed 
to eliminate the influence of time drift between sensors, 
remove the inconsistency between the sequences from vari-
ous sensors, and thereby generate a coarse-to-fine procedure 
for robust camera-tracking based on two-dimensional–3D 
observations from stereo sensors. We present the mathemati-
cal analysis of the iterative optimizations for pose tracking in 
a stereo red, green, blue plus depth (RGB-D) camera. Finally, 
complex indoor scenario experiments demonstrate the effi-
ciency of the proposed stereo RGB-D simultaneous localization 
and mapping solution. The results verify that the proposed 
stereo RGB-D mapping solution effectively improves the ac-
curacies of both camera-tracking and 3D reconstruction.

Introduction
Recently, the widespread availability of red, green, blue plus 
depth (RGB-D) sensors, such as Google Tango, Kinect V1, Ki-
nect V2, and Structure Sensor has led to substantial progress 
in three-dimensional (3D) scanning for indoor mapping, as 
this sensor equipment is inexpensive, lightweight, and has 
high-quality 3D-perception capabilities (Endres et al. 2012; 
Mur-Artal and Tardos 2017; Newcombe et al. 2011). In effect, 
this technology can be regarded as a combination of laser and 
visual systems that enables synchronous, high-speed capture 
of depth and intensity data. Thus, due to financial constraint 
and accuracy requirements, RGB-D sensors are the optimal 
choice for indoor 3D reconstruction.

Many researchers have endeavoured to combine infor-
mation from single RGB-D sensors (Henry et al. 2014; Kerl, 
Stuckler, and Cremers 2015; Mur-Artal and Tardos 2017; 
Newcombe et al. 2011; Olivier et al. 2018; Whelan et al. 
2015). However, the accuracy and precision of indoor 3D 
reconstruction with RGB-D devices is highly dependent on 
the accuracy and robustness of the frame registration and 

global-optimization processing. Moreover, the frame-matching 
procedures of single RGB-D mapping systems fail when insuf-
ficient features are present in the available fields-of-view of 
scenes (Chow et al. 2014).

One solution to this problem is the use of visual simul-
taneous location and mapping (SLAM) algorithms, which 
benefit from a large field of view (Davison, Cid, and Kita 
2004). To achieve more robust locating and mapping during 
visual SLAM, robotics researchers’ use of multiple cameras 
has recently grown, because multiple cameras enable a larger 
field of view and yield a greater number of observations for 
frame-registration and map-updating tasks. This implies that 
the robustness of camera-tracking can be improved by extend-
ing the SLAM solution from a monocular camera to multiple 
cameras (Mazaheri Tehrani 2015).

So far, multiple RGB-D mapping systems of different con-
figurations have been developed. The researchers responsible 
concluded that accurate calibration and data synchronization 
of multiple RGB-D cameras are an important prerequisite for 
such systems (Chen et al. 2018; Yang et al. 2015; Yong et al. 
2011). Typically, the calibration of a multiple camera systems 
is achieved using an optical approach or a geometric approach. 
The optical approach enables the location of the rigid trans-
formation by minimizing the reprojection error of all corre-
spondences in two-dimensional (2D) space, and the geometric 
approach obtains the calibration parameters by minimizing the 
residual error of all 3D correspondences. However, even after 
using a careful calibration method to reduce the influence of the 
depth error, the alignment from the global registration is inac-
curate due to the inconsistences of distance measurement-error 
spreading over the depth frames (Deng et al. 2014). Furthermore, 
because synchronization of multiple RGB-D sensors is not practi-
cal, significant trajectory drift exists between different sensors.

We address this problem by developing a trajectory drift–
compensated (Td-C) solution for stereo RGB-D mapping, which 
enables the use of observations from multiple views for accu-
rate camera-tracking. Thus, our Td-C model is used to elimi-
nate the inconsistencies of measurements between the data 
from different sensors. After presenting a literature review on 
the RGB-D mapping solutions, we introduce a novel camera cal-
ibration procedure that incorporates intrinsic calibration for 
single sensors and a coarse-to-fine boresight calibration for ste-
reo RGB-D sensors. A Td-C model is then presented in detail for 
accurate synchronization between data streams from different 
sensors, and a coarse-to-fine multiple camera-tracking method 
is introduced for map updating tasks. The performance and 
robustness of the proposed solution is validated using two sets 
of data sets collected in real scenes. Finally, conclusions and 
recommendations for future work are presented.
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Related Work
In recent years, a great many 3D dense mapping and visual 
SLAM solutions based on RGB-D devices have been proposed. 
State-of-art RGB-D mapping studies usually use a single sensor 
to gather point clouds, and RGB-D SLAM systems can generally 
be categorized as dense, sparse, or direct according to their 
method of frame registration.

The first dense-tracking system, KinectFusion, was de-
signed for single RGB-D modelling and functioned by register-
ing the depth-frame and point-cloud streamed from the sensor 
into a single global volumetric model. To achieve real-time 
camera updating, the iterative closest points (ICP) algorithm 
was used to track the streamed RGB-D frame to a global surface 
model (Newcombe et al. 2011). However, the proposed SLAM 
system consumed a large amount of computer resources and 
its working range was limited to volumes of less than 7 m3. 
Moreover, the dense tracking system ignored the cumulative 
drift-error that occurs during processing of frame-by-frame 
tracking. Subsequently, extensive efforts were made to reduce 
the computational burden of dense tracking, as exemplified 
by the development of an improved KinectFusion system 
(Whelan et al. 2012; Whelan et al. 2016), a volumetric re-
construction based on a spatial hashing scheme (Nießner et 
al. 2013), and KinectFusion with Octree (Zeng et al. 2012). 
Nowadays, a global optimization method is used for reducing 
the drift error during SLAM (Dubbelman and Browning 2013; 
Grisetti et al. 2011). In addition, the depth measurements and 
RGB image sequence can be integrated to enable an extended 
mapping-range and coverage (Wu et al. 2019).

In another advance, sparse, feature-based SLAM systems can 
be used. As unlike dense RGB-D SLAM systems, the former use 
few feature-matching points for camera pose updating and map-
ping tasks. This greatly reduces the computational cost, mean-
ing that the sparse, feature-based system can be used for scene 
mapping over a larger range. The early feature-based RGB-D 
SLAM system proposed by Engelhard et al. (2011) used speeded-
up robust features for feature detection. The 2D feature-matches 
detected from the adjacent color frames were then mapped to 
the corresponding depth frames, which transformed the fea-
tures from 2D to 3D. Then, all 3D matches were used for camera 
pose estimation and a vertex-edge graph optimization method 
was used to reduce the trajectory drift during pose-tracking. 
Extensive efforts were also made to enhance the robustness and 
accuracy of camera-tracking. These efforts involved investiga-
tion of the robustness, accuracy, and time-efficiency of various 
kinds of feature descriptors and matches (Endres et al. 2014; 

Henry et al. 2012; Mur-Artal and Tardos 2017), estimation of 
the camera motion by integration of different types of features 
(Kerl et al. 2013; Kim, Coltin, and Kim 2018; Le and Kosecka 
2017; Shi et al. 2018; Tang et al. 2018; Zeng et al. 2017), and 
exploration of the uncertainty of depth measurements (Park et 
al. 2012; Tang et al. 2019; Vestena et al. 2016).

To enhance the tracking performance in textureless regions, 
the direct sparse odometry (DSO) method was proposed by 
Alismail, Browning, and Lucey (2016) and Engel, Koltun, and 
Cremers (2017). The DSO method does not depend on keypoint 
detectors or descriptors; rather, it can naturally sample pixels 
from across all image regions that have intensity gradients, 
including edges or smooth intensity variations on essentially 
featureless walls. Gao et al. (2018) improved the DSO method, 
developing an extended DSO method with loop-closure 
handling. Furthermore, Schops, Sattler, and Pollefeys (2019) 
recently proposed a direct Bundle Adjustment approach to 
ensure global consistency during RGB-D SLAM; this approach 
enables simultaneous optimization of poses and geometry, 
thus limiting the size of the individual optimization problems.

However, the above-mentioned RGB-D mapping system is 
equipped with a single camera, which means that the camera 
pose tracking algorithm may easily fail in complex environ-
ments due to the very limited field of view of single camera, 
meaning it fails to identify a sufficient number of visual fea-
tures (Chen et al. 2018). Furthermore, the 3D scenes obtained 
by a single RGB-D sensor are often incomplete due to occlusion 
and the sensor’s limited scanning range. In another approach, 
the utilisation of multiple sensors has been a popular option in 
a variety of mapping applications as it can provide sufficient 
measurements to fulfill the requirements of frame-registration 
and map-updating tasks (He and Habib 2018). This means 
that it is possible to achieve better accuracy and more robust 
camera-tracking by using a multiple sensor setup. In their 
early research, Fuhrmann, Langguth, and Goesele (2014) and 
Pless (2003) constructed a multiple visual camera system for 
mapping. They presented the theoretical detail of utilisation of 
multi-camera systems in structure-from-motion studies. Kaess 
and Dellaert (2006) introduced an eight-camera rig system for 
better camera-tracking, and described a sparse SLAM approach 
for real-time reconstruction from multi-camera configurations. 
Hee Lee, Faundorfer, and Pollefeys (2013) presented a visual 
ego-motion estimation algorithm for a self-driving car, which 
was equipped with a multi-camera system. They also intro-
duced a generalized camera model for a multi-camera system 
by using a two-point random-sample consensus (RANSAC) 

Figure 1.Visual SLAM system using two Kinects mounted on a trolley. Left: Stereo camera SLAM system using two Kinect V2 
mounted on an NVIDIA Jetson TX2. Middle: View angle of the stereo RGB-D sensor. Right: Downward camera view and upward 
camera view at the same stamp.
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scheme. Based on the parallel tracking and mapping system 
(Klein and Murray 2007), a stereo-camera visual SLAM system 
was proposed by Yang, Scherer, and Zell (2014), in which the 
iterative optimizations for pose tracking and map refinement 
that use the observations from stereo cameras were detailed 
and verified. The results of their experiments implied that 
their proposed system was more resistant to tracking failure 
than a monocular method. Furthermore, Yang, Scherer, and 
Zell (2016) presented a more robust SLAM solution for modular 
autonomous vehicle systems (MAVs) based on a dual-camera 
system, in which they used the integrated loop-closure detec-
tion and global optimization processes to achieve better track-
ing accuracy. The loop-closing method is especially important 
in multiple camera SLAM, and Lee, Fraundorfer, and Pollefeys 
(2013) introduced a structureless pose-graph loop-closure 
framework in which the relative pose was obtained from the 
epipolar geometry of the multiple camera system.

To the best of the authors’ knowledge, multiple RGB-D 
mapping systems have rarely been investigated. Chow et al. 
(2014) constructed a hybrid mobile-mapping system with an 
inertial measurement unit , two Kinect sensors, and a laser 
scanner. However, instead of tracking with the observations 
from multiple views, a point-to-plane ICP algorithm was 
used for tracking each Kinect pose individually, and then 
integrated into an implicit iterative-extended Kalman filter. 
Yang et al. (2015) introduced a stereo RGB-D SLAM system, 
which involved all observations detected from the adjacent 
frames being streamed from multiple cameras for camera-
tracking. They compared the results from a single-sensor and 
dual-Kinect system, and found that the latter provided better 
pose-tracking performance and achieve higher mapping-
accuracy. However, there are two problems with the Yang 
et al. (2015) approach. First, the potential tracking error in 
SLAM was not considered in the external calibration proce-
dure for stereo sensors, and thus loop-closure detection was 
not implemented. Second, the system ignored the significant 
time drift of data streamed from different sensors, which may 
result in inaccurate camera-tracking. Chen et al. (2018) intro-
duced a triple RGB-D system mounted horizontally on a rig. In 
this system, sensors were driven with the opensource frame 
OpenKinect. However, instead of a SLAM framework, they 
concentrated on calibrations of single and multiple sensors, 
and verified the effectiveness of mapping using multiple RGB-
D cameras. However, the external calibration in this work was 

achieved with a global rigid transformation by minimizing 
the residual error of all correspondences, which ignored the 
inconsistences in the accuracy of correspondences. Thus far, 
several multiple RGB-D mapping systems have been developed 
and introduced, and it has been found that accurate calibra-
tion and data synchronization of multiple RGB-D cameras are 
a prerequisite for these systems (Chen et al. 2018; Yang et al. 
2015; Yong et al. 2011).

However, as mentioned above, existing multiple RGB-
D mapping systems achieve extrinsic calibration based on 
the traditional chessboard, which may generate inaccurate 
registration due to the inconsistences of distance measure-
ment-error spreading over the depth frame. Meanwhile, the 
manipulation of data synchronization for data sequences 
from different sensors has not been addressed. Therefore, this 
study focuses on these problems and presents a Td-C solution 
for stereo RGB-D mapping.

Our work is innovative for two reasons. First, in consider-
ation of the influences of depth errors on external calibration 
results, a careful calibration procedure is presented in detail. 
Second, a Td-C model specifically designed for data synchro-
nization between multi-sensors is incorporated into a coarse-
to-fine multiple camera-tracking procedure.

Coarse-to-Fine Stereo RGB-D Camera Tracking
Overview of Approach
Herein we present a Td-C solution for stereo RGB-D SLAM that 
eliminates the influence of time drift between cameras during 
motion-tracking. Figure 2 shows the framework of our Td-C 
solution for stereo RGB-D mapping, which consists of a calibra-
tion, a front-end, and a back-end. The calibration work is 
separated into two parts: calibration of a single RGB-D sensor, 
and calibration of the stereo-RGB-D sensors. First, the camera 
parameters for the single sensor are obtained with a standard 
camera calibration process. Second, we use a coarse-to-fine 
calibration scheme to calibrate the stereo-RGB-D sensors, solve 
the initial exterior orientation parameters (EoPs) from sparse 
control markers, and further refine the initial value by an ICP 
variant that minimizes the distance between the RGB-D point 
clouds from the reference and the slave sensors.

Although a fixed rigid transformation should in theory be 
sufficient to register the frames with the same time stamp from 

Figure 2. Framework of –Td-C solution for stereo RGB-D mapping (where g2o stands for general (hyper)graph optimization).
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two sensors, multiple Kinect sensors cannot be synchronized 
due to hardware limitations. This results in significant time 
drift between the published RGB-D streams of different sensors, 
which may cause inaccurate registration. To compensate for 
this time drift between data streams from different sensor and 
enable the use of observations from stereo sensors, we separate 
the stereo RGB-D tracking into two threads. In the first thread, 
reference camera pose tracking is conducted, and the 2D 
and 3D feature matches detected with adjacent RGB-D frames 
are used for pose-recovery. The second thread involves first 
integrating the trajectory drift–compensated strategy to avoid 
inconsistency between the streams from different sensors.

In particular, in this approach the frame streamed from the 
reference sensor is defined as the “reference frame” and the 
frame from the slave sensor is defined as the “slave frame”. To 
facilitate the use of stereo RGB-D tracking, we collectively define 
the frames captured with the same time stamp or a minimum 
time-difference in different sensors as a “bundle frame”, which 
is to be used for motion optimization by integrating all obser-
vations from stereo views. Therefore, to reduce the influence of 
time drift in bundle frames, a trajectory-compensated strategy 
is applied to translation, and rotation is introduced to recover 
an accurate relationship between the slave frame and the refer-
ence frame. It should be noted that the drift of the translation 
and rotation of each “bundle frame” depends on the time-
difference and movement speed of the system. After this, the 
new compensated keyframes from the slave sensor are inte-
grated for pose refinement and used to create new map points. 
Finally, experiments in complex indoor scenarios demonstrate 
the efficiency of our proposed multiple RGB-D SLAM algorithm.

RGB-D Sensor Calibration
The calibration procedure is divided into two threads. The 
first thread handles the intrinsic calibration of the RGB and 
depth cameras’ geometric parameters, namely focal length, 
principal point, and distortion parameters, and calibrates the 
RGB-D baseline. The core concept of intrinsic calibration of a 
single sensor is based on the pinhole camera model, which 
represents the relationship between the 2D image-point and 
the corresponding 3D ground point as a function of the cam-
era’s internal and external parameters.

The second thread deals with the calibration for EoPs, 
which enables precise registration of the point cloud from 
different sensors. In this work, we derive the accurate EoPs by 
minimizing the residual errors of 3D correspondences; the 3D 
cone-markers shown in Figure 3a and 3b are used for calibra-
tion purposes to ensure the consistent measurement accu-
racy of correspondences. The feature matches are detected 

from RGB images by a scale-invariant feature transform (SIFT) 
operator (Lowe 2004). The corresponding 3D point pairs are 
obtained by mapping feature-matches to depth images, in 
which Prand Ps represent the peak points of 3D cones in the 
reference sensor and the slave sensor, respectively. Using 
RANSAC and the least-squares method, the optimal rigid trans-
formation Tr

s
  between the downward and upward cameras 

can initially be calculated by minimizing the cost function 
according to Equation 1 below:

 
T

A
w T P Ps
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T i A
i r

i
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i= ( ) -






∈
∑argmin

1 2

 
(1)

Here, Pi
r ≅ Tr

s ·Pi
s, where Tr

s consists of a rotation matrix R and 
a translation t, A contains the associations between feature 
points of the frames from two sensors, and wi is the weight 
for each point based on the theoretical error-of-depth mea-
surement (Khoshelham and Elberink 2012). After that, we 
further refine the EoPs Tr

s with an ICP variant by minimizing the 
distance between the point cloud from two sensors. As shown 
in Figure 3c and 3d, the point clouds from the reference sen-
sor and the slave sensor are captured at the same time and 
can thus be registered with high precision. Quantitatively, the 
recovered external parameter provides a 0.006-m root-mean-
square error (RMSE).

Trajectory Drift–Compensated (Td-C) Approach
During the stereo RGB-D mapping, two sets of RGB-D data sets 
are streamed, and each frame is labeled with its correspond-
ing time stamp. To facilitate the use of stereo RGB-D tracking, 
we collectively define the frames captured with the same time 
stamp or minimum time difference in different sensors as a 
“bundle frame”, which is to be used for motion optimization 
by integrating all observations from stereo views. Although a 
fixed rigid transformation obtained by the external calibration 
method in the section “RGB-D Sensor Calibration” should in 
theory be sufficient to register the frames in a bundle frame, 
multiple Kinect sensors cannot be synchronized, and a sig-
nificant time drift can thus be seen in the frames of a bundle 
frame due to the unstable topic-publishing rate of sensors. 
As shown in Figure 4, this time drift in each bundle frame is 
plotted together with the sensor trajectory, in which the RGB-D 
data sets are streamed at 5 Hz. As measured, for each bundle 
frame there is an average 0.03 s time drift between the frames 
captured by different sensors.

As demonstrated in Figure 4, the sensors are synchronized 
with the network time protocol time service, which enables 
millisecond-level synchro error. This means that the starting 

Figure 3. External calibration of multiple stereo RGB-D cameras, with (a) 3D markers for external calibration; (b) RGB frames 
from stereo cameras for calibration; (c) point clouds from stereo cameras for calibration; (d) the merged point cloud after 
external calibration and external parameter-setting.
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frames that are captured by different sensors generally share 
the same time stamp and that the drift is negligible. As shown 
in Figure 5b, the blue box represents one bundle frame, which 
consists of one frame plotted with the blue dot and one frame 
plotted with the red dot, representing data captured by the 
reference sensor and slave sensor, respectively. In this condi-
tion, the frames from reference Fr and the slave sensor Fs can 
be precisely registered with the calibrated external parameter 
Tr

s, as shown in the left of Figure 5a.
As mentioned above, time drift in the frames of a bundle 

frame is inevitable. As shown in the right of Figure 5a, a 
significant time drift exists between Fr and Fs in condition 2. 
To enable accurate use of observations from multiple cameras, 
Tdrift is applied to compensate for the drift of each bundle 
frame. A Td-C strategy is proposed to derive the compensat-
ing transformation and to eliminate the discrepancy of the 
data streams from the reference and the slave sensors.

In this Td-C strategy, we derive the accurate trajectory drift 
for each bundle frame in a spatially variant way. In Figure 5b, 
two bundle frames, BF1 and BF2, represent the adjacent key 
bundle frames captured by stereo sensors, which consist of 
BF1r  and BF1s, and BF2r  and BF2s, respectively. By mapping 
the time stamp of the slave frame BF1s to the timeline of the 
reference sensor, we hypothesize that one fictitious frame 
BF1r' exists in the data stream of the reference sensor, which 
is denoted by the same time stamp of BF1s and plotted with a 
yellow dot in Figure 5b. Therefore, frame BF1s and frame BF1r' 
can be precisely registered according to Equation 4 (below), 

and the relation of BF1r and BF1r' can be described by Equa-
tion 3 (below). Based on Equations 2 and 3, an accurate rela-
tive pose of the reference frame BF1r and the slave frame BF1s 
in BF1 can then be derived as Equation 4, below.

 BF T BFr
s
r s1 1' = ⋅  (2)

 BF T BFr r1 1= ⋅drift '
 (3)

 BF T T BFr
s
r s1 1= ⋅ ⋅drift

 (4)

From a global perspective, the camera pose is in a nonlin-
ear variant rule. In our method, only two adjacent key bundle 
frames are considered and used for trajectory drift compensa-
tion. Locally, we hypothesise that the translation and rotation 
vary linearly with time. Therefore, in our method, a linear 
basis is imposed on the translation and rotation to recover the 
accurate relative pose Tdrift of the fictitious frame BF1r' and the 
reference frame BF1r. Using ts interval  ts ts. || ||= -BF BFr r2 1  
to represent the time interval between BF1r and BF2r, and 
ts drift  ts ts. ||= -BF BFs r1 1 || for the time drift in BF1, which 
is the time difference of the frame captured by the reference 
sensor and the frame captured by the slave sensor, a scale 
parameter S is computed using Equation 5, as follows:

 
S

BF BF

BF BF

s r

r r= =
-
-

ts.drift
ts.interval

ts ts

ts ts

|| ||

|| ||

1 1

2 1
,, ,withS ∈[ ]0 1

 
(5)

where ts is the time stamp of a specific frame, tsBFir is 
the time stamp of the reference frame in the ith “bundle 
frame”, and similarly, tsBFis is the time stamp of the slave 
frame in the ith “bundle frame”. It should be noted that the 
acquisition time of the slave frame BF1s is always located 
between the time stamp of BF2r and BF1r. Therefore, the 
value S always lies in interval [0,1]. As the SLAM framework 
is separated into two threads, the camera motion TBF1r = 
(tBF1r, rotBF1r), TBF2r = [tBF2r, rotBF2r] of BF1r and BF2r is derived in 
the first thread. Using the linear basis, the camera position 
tT

BF1r' = (xBF1r', yBF1r', zBF1r')T of the fictitious frame BF1r' can then 
be calculated using Equation 6, as follows:

  
t t S t t

BF
T

BF
T

BF
T

BF
T

r r r r1 1 2 1' = + ⋅ −( )  
(6)

where tT
BF1r = (xBF1r, yBF1r, zBF1r)T is the camera position of frame 

BF1r, and tT
BF2r = (xBF2r, yBF2r, zBF2r)T is the camera position of 

frame BF2r.
Similarly, a linear basis is used to interpolate rotation 

quantities. This is achieved by the spherical linear interpola-
tion (slerp) operation, which interpolates the rotation over the 
sphere, as shown in Equation 7:

Figure 4. Time drift in each bundle frame.

Figure 5. Two conditions in bundle frames and Td-C strategy. (a) Time-drift problems in bundle frame. (b) Td-C strategy for 
the bundle frame.
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which linearly interpolates between two quaternions 
rot  rot

BF BFr r1 2
,  respectively, and where ( )cos ( )α = ⋅rot rot

BF BF
T

r r1 2
. 

More information on the slerp operation was given by 
Shoemake (1985).

After that, the camera motion T t
BF BF BFr r r1 1 1’ ’ rot= ( )′ ,  of the 

fictitious frame BF1r' is obtained, and Tdrift for each bundle-
frame can be recovered as Equation 8, as below:

 
T T T

BF BFr r
drift

’= ⋅-
1

1
1  

(8)

Coarse-to-Fine Stereo RGB-D Tracking
In our stereo RGB-D visual SLAM system, the camera-tracking 
module consists of two separate threads. The first thread is 
responsible for key-frame detection and initial tracking with 
the data stream from the reference sensor. The second thread 
is then used for Td-C and pose optimization by integrating all 
observations from the stereo bundle frames.

Camera Projection Model and Pose Update
In our system, two camera projection models are used, a 
depth camera projection model, and a camera projection 
model for pose updating. The depth camera projection model 
describes the relationships of image space in the depth frame 
and in local object space. Based on the calibrated internal pa-
rameters, i.e., focal length, principle points, and distortions, 
each pixel with valid measurement information is projected 
to object space, which enables the corresponding 3D points to 
be calculated. The depth camera projection model is given by 
Equation 9, as follows:

 
u

d
K Pj

i i
j
i=

1

 
(9)

where ui
j = (x,y)T are the image coordinates of the jth point of 

the sensor Ci; Pi
j = (X,Y,Z)T are the 3D coordinate of the jth point 

of the sensor Ci; d is the corresponding depth value in the 
depth image, which is equal to the Z value of Pi

j; and
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,

the interior matrix of the depth camera of sensor Ci.
The depth camera projection is used for 2D–3D mapping 

from the depth image to 3D space, which provides an absolute 
constraint during the pose update. Based on the calibrated 
RGB camera parameters, the camera projection model for the 
pose update is constructed per Equation 10, as follows:

 
u T Pj

i
C C

k
j
i

i i
= ( )

 
(10)

where lCi
 is the projection model of the RGB sensor of sensor 

Ci with consideration of lens distortion, and TCi

k is the camera 
pose of the kth key bundle frame of sensor Ci, which consists 
of a rotational and a translational component.

In the stereo RGB-D mapping system, the pose update is 
computed by integrating all observations from all cameras, 
in which the relative pose of sensors dynamically derived 
by the Td-C strategy is used as an absolute constraint. The 
pose update of the reference sensor can be expressed with 
one transformation matrix μ, where TC1

k and TC1

k–1 are the 

reference sensor pose of the kth and (k–1)th key bundle frame, 
as described by Equation 11, below:

 TC1

k = μ TC1

k–1 (11)

The pose of the slave sensor is updated by applying the 
dynamically derived transformation relative to the reference 
sensor. The relations between the reference sensor and the 
slave sensor in the adjacent key-frame can be represented as 
Equations 12 and 13, as follows:

 TC1

k = Tdrift
k ·Ts

r·TC2

k (12)

 TC1

k–1= Tdrift
k–1·Ts

r·TC2

k–1 (13)

By combining Equations 11, 12, and 13, the pose update for 
the slave sensor can be derived as the following Equation 14:

 TC2

k = (Tdrift
k ·Ts

r)–1·μ·Tdrift
k–1·Ts

r·TC2

k–1 (14)

Therefore, the problem of the SLAM system now mainly 
consists of how to obtain an optimized pose update for the 
stereo RGB-D system.

Initial Camera Tracking with Reference Sensor
In the first thread, initial poses of the reference sensor are 
derived by minimizing the reprojection error of all observa-
tions detected from the adjacent key-frames. In our system, all 
key points detected by SIFT descriptor and feature matches are 
obtained with the graphics processing unit (GPU)-SIFT algo-
rithm (Wu 2011). In the initial pose tracking stage, only fea-
ture points with valid depth information are used. Therefore, 
each feature point with valid depth information is projected 
to object space based on the depth camera projection model. 
The corresponding 3D coordinates are subsequently used as 
an absolute constraint during the pose-update calculation. 
According to Equation 15, the objective function with respect 
to the reprojection error of all observations (Oi) can be derived 
and the camera pose update can be achieved by an iterative 
least squares calculation:
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where E u uji j
i

j
i= -  is the residual error of each feature point, 

in which ui
j are the image coordinates detected from the color 

image, and 
—
ui

j are the image coordinates of the reprojection 
points. Specifically, Ωji is defined for weight representation, 
which is related to the reliability of the feature point and 
represented as an information matrix. It should be noted that 
the accuracy of depth measurement determines the weight 
of each correspondence, and in our solution, a feature with 
a depth less than 5 m is fixed during bundle adjustment to 
provide an absolute constraint.

In this work, the initial pose of the reference sensor is 
derived by iteratively solving the problem using a nonlinear 
least-squares method. To estimate the rotational and transla-
tional parameters and optimize the position of correspondenc-
es, the corresponding Jacobians related to TC1

k and Pi
j are de-

rived by differentiating the error model. To enable convenient 
mathematical computation, quaternions are used to represent 
roll, yaw, and pitch rotations. Thus, in this solution, for each 
feature point j in the kth keyframe, the Jacobian matrix of Eji 
with respect to the parameters of translation and rotation TC1

k 
can be derived by using a chain rule, as in Equation 16 below:
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where the first item of the above equation represents the Jacobian 
matrix of the camera projection function, and the second item is 
the Jacobian related to the translational and rotational compo-
nents. The second item is also given by Equation 17, as follows:
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Simultaneously, the 3D position of each map point is also 
optimized during this iterative processing. We derive the Ja-
cobian matrix of Eji relative to the position Pi

j in a similar way, 
according to Equation 18: 
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Pose Refinement with a Drift-Compensated “Bundle Frame”
As shown in Figure 6, the poses of the reference frames can 
be obtained by the initial camera-tracking progress. The tra-
jectory drift in the bundle frame is then compensated for, and 
the accurate relations between the frames in the bundle frame 
are recovered.

When stereo RGB-D cameras are used, we use all observa-
tions detected from the adjacent bundle frame for bundle 
adjustment and pose refinement. As defined previously, 
each bundle frame consists of one frame BFr

k from the refer-
ence sensor and one slave frame BFs

k from the slave sensor, 
and the relationship between these can be represented by a 
rigid transformation as described in Equation 4. Therefore, 
for the adjacent bundle frames, two sets of 3D observations 
P1

m and P1
n of the corresponding image observations O1 and O2 

are detected from the adjacent frames of the reference sensor 
and the slave sensor, respectively. The reprojection error for 
each set of observations can be represented by Equation 19, as 
shown below:
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Here, Em
1,k , E

m
1,k –1, E

m
2,k, and Em

2,k –1 are the reprojection errors 
of the feature points of the reference sensor and the slave sen-
sor in the kth and the (k–1)th key “bundle frame”, TC1

k, TC1

k–1, 
TC2

k, and TC2

k–1 are the corresponding poses of the kth  and the 
(k–1)th key bundle frame of the reference and the slave sensor, 
respectively, in which the relations between the frames in 
each bundle frame are derived by external calibration and a 
Td-C processes, u1

m, um
1,k–1, un

2k, and un
2,k–1 are the image coor-

dinates of the feature points of the reference sensor and the 
slave sensor in the kth and the (k–1)th key bundle frame, and 
lC1

 and lC2
 are the projection functions of the RGB camera of 

sensor C1 and C2, with consideration of lens distortion. Thus, 
a unified error function can be modelled in Equation 20, as 
follows below. This method allows the full integration of 2D 
and 3D observations in O1 and O2.
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For the pose-tracking of stereo sensors, the optimization 
problem is to find the optimal pose update μ for the system 
between the (k–1)th key bundle-frame and the kth  key bundle-
frame, with reference to Equation 21:
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In this condition, the problem is solved iteratively by 
a nonlinear least-squares method. Thus, the pose updates 
related to the next key frame can be refined and improved, 
and the pose of the reference and slave cameras can then be 
derived by Equations 10 and 13.

The abovementioned work enables robust camera-tracking 
by integrating all of the observations from the stereo-RGB-D 
sensors. However, drift-error inevitably occurs during suc-
cessive frame-registration, which then accumulates over 
trajectory length and time. In this solution, we use a bag-of-
word-based technique (Gálvez-López and Tardos 2012) for 
loop-closure detection. After that, a vertex-edge pose graph 
proposed by Grisetti et al. (2011) is used to represent the 
loop-closure constraint, in which vertices contain poses of 
all key frames, and the edges are the corresponding relations 
between the key frames obtained during frame alignment. 
Therefore, the core idea of the global optimization problem 
is to distribute the error over the whole loop, which is then 
solved by a nonlinear least-squares optimization.

Experimental Analysis
Data Acquisition and Error Metrics
In our system, all sensors are locked on a stable stem and 
connected to an NVIDIA nano-development board running 
Ubuntu 16.04 and ROS Kinetic via a USB 3.0 interface mounted 
on a trolley, as shown in Figure 1. As the official software 
development kit for Kinect V2 can only support a single sen-
sor, the open-source driver OpenKinect is used to power the 
stereo Kinect v2s system for data collection. The RGB-D sensor 

Figure 6. Demonstration of coarse-to-fine stereo RGB-D tracking.
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comprises a depth camera and an RGB camera, and the raw 
streamed depth and color images are initially not aligned. We 
use the OpenNI-driver to guarantee pixel-level alignment of 
depth and color images.

To obtain the absolute camera pose of the RGB-D system, we 
use an external laser system, GeoSLAM ZEB-REVO (Cadge 2016), 
which provides 1–3 cm relative mapping-accuracy. To ensure 
the consistency of mapping results from RGB-D and ZEB-REVO 
systems, a GeoSLAM ZEB-REVO system is fixed on the platform, 
as shown in Figure 7a. Careful extrinsic calibration is con-
ducted between the RGB-D sensor and the ZEB-REVO sensor. 
In our system, the initial transformation between each RGB-D 
sensor and the ZEB-REVO system is calculated with dozens of 
markers attached on the wall. An accurate rigid transforma-
tion is then derived from their respective ICP progress. Figure 
7b shows the sample point-cloud collected by the stereo RGB-D 
system and ZEB-REVO system.

In our experiments, two data sets are collected to verify the 
performance of the proposed stereo RGB-D mapping solution. 
Figure 8 depicts the RGB and depth images taken at various 
camera poses for various trajectories in the office and hall-
space scenes, respectively. All frames are recorded at 640 
× 480 resolution and streamed at a 10 Hz frame rate. Corre-
spondingly, the point cloud and trajectory from the ZEB-REVO 
system is used for accuracy evaluation, as shown in Figure 9.

Generally, an RGB-D SLAM system generates the camera pose 
and the corresponding 3D point cloud. While it is neces-
sary to evaluate the quality of the generated point cloud and 

camera trajectories for algorithm verification, for each set of 
data, the results from a single RGB-D sensor and from the ste-
reo RGB-D sensors are both evaluated. Therefore, two kinds of 
metrics are used to quantify the accuracy of camera-tracking 
and 3D mapping, as described below.
1. Our trajectory estimation statistics are inspired by previ-

ous studies (Handa et al. 2014; Sturm et al. 2012) that used 
an absolute trajectory error (ATE) to quantify the accuracy 
of an entire trajectory. This method involves calculation of 
the RMSE of the Euclidean distances between the estimated 
trajectory Pi and the ground truth trajectory obtained from 
the ZEB-REVO system Qi. To unify the coordinate frames of 
both systems, we register the trajectory of the reference 
RGB-D sensor and the slave sensor to that of the ZEB-REVO 
system by a rigid-body transformation Sref, Sslave calculated 
with a carefully extrinsic calibration process. Based on 
this transformation, the absolute error of the trajectory at 
time stamp i can be calculated by Equation 22, as below:
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Thus, we evaluate the RMSE over all time indices of the 
translational components as Equation 23 as below, where 
trans(ei) refers to the translational components of the relative 
pose-error ei:

Figure 7. Data collection system and point cloud from ZEB-REVO and RGB-D systems.

Figure 8. RGB-D frames of two scenes taken at different camera poses.
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2. To quantify the accuracy of 3D reconstruction, the recon-
structed point cloud from the RGB-D system is first coarsely 
aligned with the point cloud from the ZEB-REVO system by 
manually selecting point correspondences. Point cloud 
from the RGB-D is then finely aligned to the point cloud 
from the ZEB-REVO via ICP. Finally, for each point, the clos-
est point in the point cloud from the ZEB-REVO is located, 
as is the perpendicular distance between the point and the 
reference point cloud. The standard deviation is computed 
over the distances for all points.

Experimental Results
Office Scene
The office scene data sets contain two sets of RGB-D sequences 
recorded from the stereo RGB-D system. The stereo sensor 
works at 10 Hz with a resolution of 640 × 480 pixels after 
rectification. As discussed in the section “Trajectory- Drift– 
Compensated (Td-C) Approach”, each bundle frame consists 
of two frames, one from the reference sensor and one from 
the slave sensor, and a significant time drift was seen in each 
bundle frame due to the unstable topic-publish rate of the 
sensors. As shown in Figure 10a, the time drift of each bundle 
frame in the office scene is plotted together with the camera 

trajectory, in which the red dots are the reference sensor’s 
position after camera-tracking, the yellow dot is the starting 
point of this scan, and the time drift is represented by the 
blue error bar. Except for the starting point, the time drift is 
randomly distributed over the whole trajectory.

Similarly, Figure 10b comprises a plot of the time drift 
together with the time stamp of the data stream. Quantitatively, 
the maximum time drift in this scene is approximately 55 
ms, and the average drift is about 17.4 ms. Figure 10b shows 
that the time drift in each bundle frame is generally irregular 
and unpredictable, which is difficult to model with a unified 
mathematic model. This will have a large effect on the tracking 
accuracy of the stereo RGB-D system. Therefore, the time drift 
in each bundle frame is compensated for by adding an extra 
transformation to the relationship between the reference sensor 
and the slave sensor during stereo RGB-D tracking, as detailed in 
the section “Trajectory- Drift– Compensated (Td-C) Approach”.

In this experiment, the camera trajectory and the point 
cloud obtained by the ZEB-REVO device are used as the ground 
truth for accuracy evaluation. Camera tracking experiments 
were conducted and compared with the data set before and 
after the Td-C process.

The performance of the proposed Td-C stereo RGB-D map-
ping method was initially evaluated with the absolute trans-
lation RMSE of the camera trajectory. Based on the calibrated 
external parameters between the RGB-D sensor and the ZEB-REVO 
system, the estimated camera trajectories are transformed to 
the coordinate system of the ZEB-REVO system for comparison. 

Figure 9. Corresponding point clouds of office and hall space captured by a ZEB-REVO system.

Figure 10. Time drift between the data stream of stereo RGB-D sensors in office scene.
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As demonstrated in Figure 11, the estimate trajectories and the 
ground truth trajectories are plotted and the translation errors 
of all key bundle frames are represented, together with the 
trajectories. Table 1 lists all statistics for the accuracy of the re-
construction, including the RMSE in the X, Y, and Z directions, 
the RMSE of the translation error, and the relative error of the 
tracking length. As shown in Figure 11, the discrepancies rep-
resented by the red lines between the estimated trajectory and 
the ground truth are improved in the experiment with the data 
set after the Td-C process than before, perhaps due to more ac-
curate relationships between the reference and the slave sensor.

Table 1 summarizes the RMSE of the translation error for the 
two conditions. The results after the Td-C process were bet-
ter, again verifying the performance of the proposed method. 
The RMSE of the translation error is improved from 0.287 m 
to 0.335 m, and the relative error is improved from 1.42% to 
1.66%. This can be explained by the fact that more reliable 
visual features can be obtained from the data stream after the 
Td-C process, which provide a better alignment. The incon-
sistency between the features from stereo frames before the 
Td-C process could introduce larger pose drifts, which will 
accumulate throughout the operation.

The trajectory error explains how the camera-tracking 
method performs in frame-to-frame tracking but does not imply 
a better reconstruction is possible. In addition, the absolute 
mapping error is calculated by comparison with the point 
cloud generated from the ZED-REVO system. The estimated 
point cloud from the stereo RGB-D sensor is first registered to 
the laser system, and ICP is used to refine the alignment. The 
standard deviation computed over the error for all reconstruct-
ed points is used as a metric. Figure 12 shows the estimated 
point cloud, the heat maps of errors for the 3D reconstructions, 
and a histogram of the approximate distances of the office 
scene. The heat maps highlight the least accurate areas of the 
reconstruction. The range of errors in the heat map of error 
and the histogram of approximate distances are scaled 
to a range of 0 to 0.2 m, for comparison purposes. As 
expected, the odometer without Td-C processing gener-
ates worse results and has a large proportion of least 
accurate areas. In the heat map, a sizable discrepancy 
can be found in the loop region in the 3D reconstruction 
result before the Td-C process, which is observed both at 
the start point and at the end point of this scanning. In 
the histogram of approximate distances (Figure 13), the 
accumulated percentage of the points within 5 cm error 
are calculated and the odometer with Td-C processing 

and without Td-C processing achieves 88.539% and 87.897% 
accuracy respectively, which again verifies the performance 
of the proposed method. Table 2 lists the average error of the 
reconstruction before Td-C and after Td-C, and the data show 
that the average error of the reconstruction improves from 
0.018 m to 0.014 m. Therefore, in these scenes, the Td-C strat-
egy improves the tracking accuracy of the stereo system and 
the 3D reconstruction.

Hall-Space Scene
The stereo RGB-D sequences are recorded in a hall space with a 
26.5-m trajectory length. Similarly, the stereo sensor operates 
at 10 Hz with a resolution after rectification of 640 × 480 pix-
els. The distribution of the time drift is shown in Figure 13. 
As expected, the value of the time drift is mainly distributed 
between 10 ms and 35 ms. Quantitatively, the maximum time 
drift in this scene is approximately 60 ms and the average 
drift is about 22 ms. A Td-C strategy is applied to each bundle 
frame during camera-tracking.

The performance of the proposed stereo RGB-D mapping 
approach was initially evaluated with the absolute translation 
RMSE of the camera trajectory. Figure 14 presents the estimate 
trajectories, the ground truth trajectories, and the translation 
errors of all key bundle frames with respect to the trajectories. 
Table 1 lists the statistics for the accuracy of the reconstruc-
tion, including the RMSE in the X, Y, and Z directions, the 
RMSE of the translation error, and the relative error of the 
tracking length. As Table 1 shows, the tracking accuracy is 
better in the experiment after Td-C than in the experiment 
before Td-C, confirming that the proposed Td-C solution im-
proves the accuracies in all three directions. The RMSE of the 
translation error improves from 0.397 m to 0.443 m, and the 
relative error improves from 1.50% to 1.67%.

Figure 15 shows the estimated point cloud, heat maps of 
errors for 3D reconstructions, and a histogram of approxi-
mate distances of the hall-space scene. The error of the 3D 

Figure 11. Estimated trajectories from the office scene compared against ground truth trajectories: (a) estimated trajectories 
before the Td-C strategy; (b) estimated trajectories after the Td-C strategy.

Table 1. Comparison of the ATE for incremental registration of the 
RGB-D sequences before and after Td-C processing.

Data 
set

Td-C 
used?

Length 
(m)

RMSE.X 
(m)

RMSE.Y 
(m)

RMSE.Z 
(m)

RMSE 
(m)

Proportion 
(%)

Office 
scene

No 20.2 0.213 0.242 0.092 0.335 1.66
Yes 20.2 0.183 0.211 0.069 0.287 1.42

Hall 
space 
scene

No 26.5 0.323 0.277 0.124 0.443 1.67

Yes 26.5 0.301 0.242 0.092 0.397 1.50
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reconstruction is accumulated with the mapping distance, 
which is consistent with the trend of trajectory error. For com-
parison purposes, the range of errors in the heatmap of error 
and the histogram of approximate distances are unified, and 
the extent is set from 0 to 1.6 m. As expected, the mapping 
results without Td-C processing generate worse results with 
a large least-accurate area. In the histogram of approximate 
distances, the accumulated percentage of points with accu-
racy greater than 0.2 m is quantified. The odometer achieves 
88.992% and 78.045% accuracy with Td-C processing and 
without Td-C, respectively. According to Table 2, the average 
error of the reconstruction improves from 0.094 m to 0.057 m, 
again verifying the performance of the proposed method.

Technical University of Munich Data Sets
As there are no stereo RGB-D data sets available for accuracy 
comparison, the Technical University of Munich (TUM) public 
data set, which is collected with a single RGB-D sensor, is used 
to further demonstrate the performance of our proposed SLAM 

Figure 12. Estimated point cloud heat maps for 3D reconstruction and histogram of approximate distances in the office scene. 
The color coding is relative to the error obtained, in terms of the (a) accuracy of the 3D reconstruction before Td-C processing, 
and the (b) accuracy of the 3D reconstruction after Td-C processing.

Figure 13. Time drift between data stream of stereo RGB-D sensors in the hall-space scene.

Table 2. Comparison of absolute error for 3D reconstruction 
before and after Td-C.

Data Set Td-C used? Avg. error (m)

Office scene
No 0.018
Yes 0.014

Hall-space scene
No 0.094
Yes 0.057
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pipeline. We apply our solution on four sequences with differ-
ent texture, illumination and structure conditions, and compare 
the experimental results of our system with the following state-
of-the-art SLAM methods: Kintinuous (Whelan et al. 2012), dense 
visual odometry (DVO)-SLAM (Kerl et al. 2013), and RGB-D SLAM 
(Endres et al. 2014). As shown in Table 3, the proposed RGB-D 
SLAM system achieves the best performance in two sequences, 
namely fr1/room, fr2/xyz. In addition, Figure 16 shows the 
point clouds that result from back-projecting the sensor-depth 
maps from the computed keyframe poses in four sequences. The 
good definition and the straight contours of the point clouds 
prove the highly accurate localization of our approach.

Conclusions and Discussion
In this study, we propose the use of stereo RGB-D cameras in 
visual SLAM for better pose tracking performance and more 

detailed indoor environment mapping. In the stereo RGB-
D system, a time drift in each bundle frame is inevitable 
and changes irregularly, which cannot be mathematically 
modelled against time drift. We propose a Td-C method to 
eliminate the influence of time drift during stereo camera 
motion tracking, which imposes an extra transformation upon 
the relationships of the reference sensor and the slave sensor 
in each bundle frame. To enable the use of observations from 
stereo sensors, a coarse-to-fine stereo RGB-D tracking method 
is proposed. A detailed mathematical analysis is presented 
to explain how to fuse the measurements from stereo camera 
for pose tracking. Via theoretical analysis and experimental 
validation, we conclude that the proposed Td-C stereo RGB-D 
mapping solution can eliminate the inconsistency between 
the data sequence obtained from the stereo sensors and can 
achieve better pose performance in both camera-tracking and 
3D reconstruction.

The Td-C stereo RGB-D mapping method discussed here 
enables the synchronization of sequences from multiple 
sensors and the integration of observations from multiple 
sensors. This permits the full comparative and synergistic use 
of different data streams from different sensors, even though 
the system cannot synchronize them precisely. The proposed 
Td-C strategy can also be used in other similar systems, such 
as integrated processing of RGB-D sensors and laser systems.

Figure 14. Estimated trajectories from hall-space scene compared against ground truth trajectories: (a) estimated trajectories 
before Td-C strategy, (b) estimated trajectories after Td-C strategy.

Figure 15. Estimated point cloud, heat maps for 3D reconstructions, and histogram of approximate distances in hall-space 
scene. The color-coding is relative to the error obtained, where (a) is the accuracy of 3D reconstruction before the Td-C 
strategy and (b) is the accuracy of 3D reconstruction after the Td-C strategy.

Table 3. Comparisons of the RMSE of ATE, (in m) for 
incremental registration of RGB-D sequences of the TUM 
benchmark data set.a 

Sequences
Our 

SLAM
Kintinous 

Fusion
DVO 

SLAM
RGB-D 
SLAM

fr1/desk 0.03 0.037 0.021 0.026
fr1/room 0.042 0.075 0.043 0.087
fr2/desk 0.062 0.34 0.017 0.057
fr2/xyz 0.011 0.029 0.018 /

aThe best results are indicated in bold.
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