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Abstract:  
Currently, there are numerous effective models for managing error propagation in data 
manipulation and analysis. But the method is still lack in handling spatial consistency. This paper 
focuses on the algorithms and models of error propagation for spatial consistency,  investigating 
the basic types of spatial data inconsistency and the procedures for correcting them. Since the 
correction operations often involve changing the position of points of one or more spatial objects, 
we propose a generalized algorithm (GA) and a related model of error propagation for point groups 
snapping within a fuzzy tolerance, which are built upon the least square method. Simplified 
algorithms and models were derived for some special cases with different statistical characteristics. 
A simple example is provided to demonstrate the potential application of the proposed method. 

1 Introduction 
Data quality in spatial databases has been widely recognized as one of the most critical issues in 
GIS applications (Veregin, 1999). It is a key dimension of spatial data suitability assessment, 
including accuracy, precision, uncertainty, compatibility, consistency, completeness, availability 
and timeliness recorded in the lineage data (Gong and Mu, 2000). In the last two decades, the topic 
of data quality has attracted much attention in the GIS community. Efforts have been 
systematically devoted to investigate various aspects in spatial databases (Goodchild and Gopal, 
1989; Heuvelink, 1993; Guptill and Morrison, 1995; Leung and Yan, 1998; Shi and Liu, 2000). 
Among the various problems raised, the issue of spatial consistency has received some special 
attentions over years (Egenhofer et al., 1994; Gong and Mu, 2000; Servigne et al., 2000), 
especially for the issue of topological consistency, which is crucial for computer-based spatial 
analysis, graphical display and the reliability of results from spatial operations, queries and 
analysis.  

In a spatial database, data are often organized by different map layers. Each layer can be obtained 
from different source which covers the same geographic area with different levels of detail 
meeting some proper needs of end users. For a single-valued map, spatial inconsistencies often 
occur from digitalization, e.g. overshoots or undershoots. Consequently, such inconsistencies will 
further propagate as an overlay operation is done for different map layers. In practical applications, 
even though each individual map layer may be consistent, it is often unavoidable that 
inconsistencies will occur in an overlaid map due to different representations for the same 
geographic objects using different geometric elements, i.e. point, line, and area. In order to 
integrate the information across different map layers, it is important for certain aspects of the 
geometry of the objects to get captured consistently throughout the input or overlaid map layers.  

In recent years, several efforts have been done on dealing with spatial inconsistency. Kufoniyi et al. 
(1993) investigated editing topologically-modelled single-valued vector maps in a relational 
database environment to ensure that the data integrity is preserved, and detailed procedures are 
formulated in performing editing operations. Servigne et al. (2000) presented a general 
methodology for spatial consistency, which is based on error survey and classifications. Three 
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kinds of errors are identified which lead to three kinds of consistency, namely, structural, 
geometric and topo-semantic consistency. Moreover, some special checking and correcting 
procedures are available for each of them, but it often involves changing the position of points of 
spatial objects by operations such as node snapping. In particular, different snapping commands, 
like �MOVE� and �ADJUST�, will generate different results for the same group of snapped points. 
In addition, the accuracy information is unavailable after the editing operations in existing 
commercial GIS packages. Therefore, a quantitative technique is suggested for assessing the best 
location for grapping and the accuracy of the resultant objects after rectification. Otherwise, it is 
difficult to assess errors in GIS products and their use suitability may not be fully qualified.  

The remainder of this paper is structured as follows: section 2 discusses the different types of 
inconsistencies existing at the input and overlaid map, and some procedures for correction are 
given. Section 3 presents a generalized algorithm for snapping operation and the related error 
propagation model using the least square method. In section 4, a simple example is provided to 
demonstrate their potential application, and to make some comparisons with different handling 
approaches. This paper ends with some conclusions in section 5.  

2 Approaches to Spatial Consistency Processing 
2.1 Spatial Inconsistency and Related Approaches 

Servigne et al. (2000) classified spatial inconsistencies into three types: structural, geometric, and 
topological inconsistency. Structural inconsistency comes from the data structures which cannot be 
implemented to correct a certain data model. In this paper we just consider geometric and 
topological inconsistencies. 

In database, the data model is used to give a representation of the real world. Often, this 
representation must be simple and should hold the important properties of real objects. For 
example, a polygon must be closed, otherwise a non-closed one is not consistent geometrically. 
Likewise, a line must not be self-intersected, otherwise geometrically inconsistent. Apparently 
geometric inconsistency comes from the geometric part of objects (the shape and position). Most 
geometric inconsistencies can be reduced to the problem concerning the object points. Therefore 
all possible operations to handle points must be clearly defined. The following enumerates five 
basic operations that can be applied to points:  

a) adding a new point;  
b) deleting a point;  
c) merging two points;  
d) projecting a point on a segment;  
e) modifying the coordinates of an existing point.  

Correspondingly, the correction can be divided into three parts:  
a)  computation of the best location of the point; 
b)  projection; 
c)  deletion of the useless points. 

A topological inconsistency is defined as a forbidden topological relation between two objects. It 
is related to the meaning of the real objects represented in the database and to the topological 
relations associated with other objects. Thus, the way correcting such inconsistency will change 
the topological relation between those objects. It can be performed through the following changes:  

a) objects modification including moving and reshaping the objects;  
b) deleting one object; and  
c) object splitting (creating a new object). 

2.2 Basic Procedures for Inconsistency Correcting 

For an individual map layer, the geometric data consists of a set of line segments and polylines. 
The errors in the observations may cause violations on geometric relations among them. Figure 1 
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shows some types of inconsistent data marked by dashed circles. Apparently, it is difficult to get 
the desired topological relations without processing these inconsistent data. Take a look at them: 

a) Two line segments intersect at exactly one point (case a). This is the most common situation 
and is handled by the following rules: first the vertices of both involved line segments il  
and jl  are stored, then il  and jl  are erased. A new vertex is created at the intersection point. 
By using the stored vertices and the new vertex, four new line segments are generated. 

 Before checking the other types of inconsistencies, we define first what a connected 
 degree means. For any point ip  in a line, its connected degree can be determined by two 
 steps: first, draw a circle of radius ε (a small number) around point ip , then count the 
 number of intersection points of the circle with the line, i.e. the connected degree of the 
 point ip , noted as )( ipDn . For each vertex, its connected degree can be regarded as the 
 number of line segments ending in it.  

b) One of the endpoints in line segment il , ip , is very close (within fuzzy tolerance) to 
another line segment jl , see cases d and e in Figure 1. This situation can be handled by the 

following rule: the endpoint ip  in line segment il  splits line segment jl . The original line 

segment il  is eliminated and two new line segments are generated. They share the same 
endpoint. 

c) A group of nodes or vertices with 1)( ≥ipDn  within the fuzzy tolerance can be joined into 
a common node, see cases b and c.  

There is a special case for (c). Consider a group of vertices with 2)( =ipDn , which is 
closer than the given fuzzy tolerance, it is necessary to determine whether these vertices are 
distinct or in the same position (case f). In this case, the user�s intervention may be needed.  

 
In the following discussion, the issue of inconsistent lines will be considered.  

d) For two line segments which may be in the same location, there are three kinds of 
inconsistent relations due to positional errors or uncertainties (see Figure 2). Hence, we can 
define such two segments that fall inside the buffer of each other within a given fuzzy 
tolerance to be completely overlapped. Under this circumstance, a simple solution is to 
remove one of two line segments together with none (case a), one (case b) or two vertices 
(case c). For case b and c, a generalized approach is described as follows: first capture the 
inconsistent point pairs of both involved line segments, then create and store the new points 
(nodes or vertices); afterwards erase the original segments; then generate a new segment.    
 

a 
b c

de

f

Figure 1. An illustration of inconsistent geometric data 
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An extension of (d) is to consider the situation of inconsistent polylines. It can be classified 
into two cases, as shown in Figure 3. Both of them need user�s intervention for consistency 
correction  

.    
e) Two polylines il  and jl  completely overlapped within a given fuzzy tolerance, and each 

vertex of il  can find a corresponding vertex to match in jl . In case a, the inconsistent point 

pairs within the fuzzy tolerance are marked with dashed circles. In this case, if il  and jl  are 
determined to represent the same geographic object, the possible approaches used for 
consistency processing are similar to those described in (d).   

f) Two polylines il  and jl  completely overlap within a given fuzzy tolerance but, each vertex 

of il  does not always find a comparable vertex in jl  within the fuzzy tolerance (case b). In 
practical applications, this case often occurs in an overlaid map. Those comparable 
polylines within the fuzzy tolerance may be of different number of line segments and input 
points. In order to make the number of segments of the two comparing lines equal, and to 
ensure their composite points comparable, object normalization is proposed here. This is 
performed by projecting all the input points of each polyline unto their corresponding one, 
thus dividing the original polylines into the same number of line segments and points. It 
should be mentioned that the projection of the vertex will be cancelled if the projected point 
falls within the fuzzy tolerance from the existing points, such unnecessary segmentation can 
be avoided. Further processing can apply the methods described in (d).  

 

 
The critical issue in the above investigations is to locate the created points. In the following 
section, a generalized method is presented for computing the coordinates of the new points, and a 
related model for accuracy assessment is provided.  

(a) (b) (c) 

Figure 2. Three cases of inconsistent line segments 

Figure 3. Two possible cases for inconsistent polylines 

(a)  (b) 

il  

jl  

il

jl
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3 Algorithm and Related Error Propagation Models 
3.1 Generalized Algorithm and Error Models 

Let T),( iii yx=z  be the i -th point from a group of points within a specified 

fuzzy tolerance, with the covariance matrix of 
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called a partial cross-correlation vector. Let Ψ be the inverse matrix of **zzΓ , i.e. 
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where ijΦ  is a 22 × partitioned matrix. Assuming that T),( yx=z is the optimally estimated 
vector of the coordinates of the new point created by snapping operation, with covariance matrix 

of 











=

2

2

y

xy

yx

x

σ

σ

σ
σ

Γ . Since the algorithm of node snapping of a group of points within fuzzy 

tolerance is essentially an adjustment algorithm of direct observations on the basis of the least 
square principle in geodesy (Mikhail, 1976), we can derive the following generalized formula for 
estimating the coordinates of the new point 
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Moreover, we can represent the universal error propagation model of coordinates through the 
snapping operation from *z to z   
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Apparently, equations (2) and (3) can be used for multiple data sources with varying resolutions.  

3.2 Algorithm and Error model for Pure Auto-correlation 

In practice, it is often assumed that the points in the snapping group from n data layers are 
independent of each other, or that the cross correlation between them can be ignored due to the 
lack of the information on their correlations, i.e., )1(0 njiij ≤≠≤=Γ . Further, if ∃  i, it 

satisfies ,0≠=
iiii xyyx σσ  then *z is called a pure auto-correlation vector. At the same time, 

equation (1) becomes a partitioned diagonal matrix, i.e. { }nndiag ΓΓΓΓ zz L2211** = , while 
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Under this circumstance, a special case exists where the points in the snapping group are from data 

sources of equal accuracy. Therefore we have: 
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example is topological cleaning of digitised data from one map source. Furthermore, equation (4) 
can be represented as:  
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Accordingly, equation (5) can be represented as:  
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As shown in equations (6) and (7), when the accuracy of the points in the snapping group is equal, 
the estimated coordinates (x, y) of the created point, are independent of the accuracy information 
of all points in the snapping group, and can be calculated separately by equation (6); their 
covariances, 2

xσ and 2
yσ , are with the correlation between ix  and iy  of the snapping points. Here 

only xyσ , which is the auto-covariance between x  and y  of the new point, is dependent on 
00 yxσ . 

It is pointed out that equation (6) is also the expression adopted by �ADJUST� algorithm. 

3.3 Practical Algorithm and Error Models 

In practice, it is common that there is no cross-correlation among the snapping points and the 
accuracy of the coordinate components, and are equal with each other, that is, 
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Thus equation (4) becomes 
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and equation (5) can be reduced to this error model: 
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It has been shown from equations (9) and (10) that in the case of a snapping point group with 
unequal accuracy, both the estimated coordinates ( x , y ) and their covariances 2

xσ  and 2
yσ , are 

dependent on the auto-correlation coefficient, iρ , of each point in the groping group, such that 
reliable estimates of their coordinates and covariances can be only obtained by applying 
simultaneously equations (2) and (3). In the following discussion, some special cases will be 
investigated with certain assumptions: 

Assumption  a)   0ρρi ≡ , )21( n,,,i L=  

This assumption means that the auto-correlation of each point in the snapping group can be 
completely identical. In this case, equation (9) can be reduced to  
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and equation (10) can be simplified into 
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It can be seen from equations (11) and (12) that both the estimated coordinates and their 
covariances are independent of the auto-correlation coefficient, 0ρ , of each point in the snapping 
group. However, the auto-covariance, xyσ , of the new coordinates is dependent on 0ρ . 

Assumption b)  0≡iρ , ),,2,1( ni L=  

This assumption shows that there is no auto-correlation for each point in the snapping group. In 
this case, equation (11) remains unchanged, while equation (12) can be reduced to 
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Assumption  c)  0≡iρ and 2
0

2 σσ i ≡ , ),,2,1( ni L=  

This assumption means that there is no auto-correlation for each point in the snapping group, and 
all points are of equal accuracy. In this case, equation (11) can be reduced to equation (6), while 
equation (13) will be reduced to 

                 






==

==

0
0

yxxy

yx

σσ
n/σσσ

  (14) 

Here, equation (14) can also be derived directly from equation (7) based on the given assumption 
above. 

4 Numerical Example 
Figure 4 shows that Poly#1 and Poly#2 are two adjacent polygons from two independent data 
layers. The accuracy of coordinates in this example is designed based on a land use map at a scale 
of 1:24,000 (Hord, 1976). In Table 1, only the coordinates and accuracy information of 
inconsistent neighboring boundaries are listed, where the identification number is encoded after 
object normalization (see in Figure 5).  
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Figure 4. Schematics of inconsistent data
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Table 1. Location and accuracy data of Poly#1 and Poly#2 after pre-processing 

 
 

Table 2. Location and accuracy data after consistency correcting 

 
 
According to above equations, we can compute all of the snapped point pairs, and the results are 
listed in Table 2. While in this example general algorithm can be reduced to equations (12) and 
(13), having:  
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and,  

Poly#          No.          mx /           my /         mx /σ       my /σ       xyρ  

11      768657.60   2935308.40     20.00         20.00         0 
12      769083.56   2935029.68     20.00         20.00         0 
13      769552.58   2935114.66     14.46         14.46         0 
14      770125.82   2935218.52     20.00         20.00         0 
15      770637.93   2935011.80     20.00         20.00         0 

1 

2 

21      768651.84   2935294.78     10.00         10.00         0 
22      769098.25   2935038.13     10.00         10.00         0 
23      769550.22   2935127.73     10.00         10.00         0 
24      770118.16   2935207.89     10.00         10.00         0 
25      770634.65   2935002.48     10.00         10.00         0 

Operation  No.     mx /           my /         mx /σ       my /σ       xyρ  

MOVE 

ADJUST

11*     768654.72   2935301.59     11.18        11.18         0 
12*     769090.91   2935033.91     11.18        11.18         0 
13*     769551.40   2935121.40       8.79          8.79         0 
14*     770121.99   2935213.20     11.18        11.18         0 
15*     770636.29   2935007.14     11.18        11.18         0 

GA 

11*     768652.99   2935297.50       8.94          8.94         0 
12*     769095.31   2935036.44       8.94          8.94         0 
13*     769550.69   2935125.12       8.22          8.22         0 
14*     770119.69   2935210.02       8.94          8.94         0 
15*     770635.30   2935004.34       8.94          8.94         0 

11*     768651.84   2935294.78     10.00        10.00         0 
12*     769098.25   2935038.13     10.00        10.00         0 
13*     769550.22   2935127.73     10.00        10.00         0 
14*     770118.16   2935207.89     10.00        10.00         0 
15*     770634.65   2935002.48     10.00        10.00         0 
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The results are also given in Table 2. The results obtained by the �MOVE�, �ADJUST� and �GA� 
algorithms are completely different. For the �MOVE� method, only location and accuracy of the 
data with better quality are considered, ignoring related information of other data sources. The 
�ADJUST� method considers location and accuracy of all data sources equally. The �GA� method 
may be regarded as a kind of a weighted average value by taking into account the accuracies of all 
data sources.   

5 Conclusion 
In this paper, the basic approaches to spatial data consistency processing are investigated, which to 
a certain degree extends the existing snapping functions used in the commercial GIS packages. In 
particular a generalized algorithm is proposed for the calculation of the best location of new point 
created by snapping a point group within a fuzzy tolerance. The related error propagation model is 
provided for accuracy assessment, which is often lack in existing GIS packages.  

The algorithm based on equation (6) for the ADJUST command in ArcInfo is only a special case 
of the new method based on equations (2) and (3) presented in this paper. The ADJUST command 
neither deals with the node snapping of a group of points with non-equal accuracy nor provides 
accuracy information of snapping results with equal accuracy. In addition, the new method can be 
applied to a general circumstance, whether with equal or non-equal accuracy, and whether 
dependent or independent snapping point group. 
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