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Abstract. Generalization is a fundamental function in GIS. It has been an
important research theme for many years in cartography and GIS. A number of
generalization operations have been identified, however most of them, especially
those rule-based operations, remain at the conceptual level. This paper describes
a set of mathematical (algebraic) models for area aggregation based on the
operators developed in mathematical morphology. In this paper, the process of
area aggregation is decomposed into two components, viz.,, combination and
shape refinement, and algebraic models for both components are developed. These
are demonstrated using various examples. The models provide a mathematical
basis for area aggregation in digital generalization of map and other spatial data.
The results show that these algebraic models have the potential for successful
application.

1. Introduction

As pointed out by Abler (1987) and Miiller et al. (1995), generalization is not
only a cartographic process but also a fundamental function in spatial data handling
and thus for GIS. In this digital era, generalization has become increasingly important
since it is needed whenever multi-scale problems of spatial data are considered.
Indeed, generalization has nowadays become part of the international research
agenda in the spatial information sciences (Marble 1984, Abler 1987, Rhind 1988,
Muiiller 1991). Over the past three decades, many projects have been initiated world-
wide and a great number of papers on this topic have been published. However,
many fundamental problems remain unresolved.

From the literature, it can be seen that a few strategies for generalization have
been developed (e.g., Brassel and Weibel 1988, Shea and McMaster 1989) and a
number of generalization operations (such as selection, omission, aggregation, coar-
sen, collapse and displacement) have been identified by researchers (e.g., Rhind 1973,
Keates 1989, Shea and McMaster 1989, Beard and Mackaness 1991). However, the
current situation is that many of these operations remain at the conceptual level and
there is an urgent need to develop many still ‘missing’ algorithms or mathematical
models for various generalization operations. Indeed, this goal has recently been
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prioritized by the ICA Working Group on Automated Map Generalization,
(Weibel 1995).

This paper describes a set of mathematical models for one of the operations,
namely, area aggregation in the geometric context. It aims only to describe a set of
mathematical models, which may be used for transforming spatial representation
from one scale to another (smaller) scale. Such models might be compared to other
transformation models, such as affine and conformal models.

In terms of relevant methodology, it is notable that most research into automated
map generalization is currently focused on vector data, even for area features, with
some exceptions (e.g., Monmonier 1983, Jager 1990, Schylberg 1993). However, it
should be more convenient to manipulate area features in raster mode since raster
is a space-primary data structure. This study will concentrate on raster data, in other
words, the mathematical models developed in this study are in raster mode. More
precisely, they are built upon the operators developed in mathematical morphology,
which is a science of shape, form and structure.

Following this introduction is a discussion of the strategy for the aggregation of
area features. Then, various operators developed in mathematical morphology are
briefly introduced in order to provide a mathematical background. After that, math-
ematical models for area aggregation, which are built upon the basic morphological
operators, are described in detail with a number of examples and, at the same time,
the relationship between the scale of spatial data and the size of the structuring
element in a morphological operator is discussed.

2. Area aggregation: problems and strategy

It can be noted from the literature that most research efforts have been spent on
line generalization and much less investigation into the generalization of area features
has been carried out. Therefore, it seems pertinent to give a brief review of generaliza-
tion operations for area features before the aggregation problem is discussed in detail.

2.1. Generalization operations for area features

The literature shows that many operations for the generalization of area features,
such as selection, elimination (or selective omission), aggregation, combination,
collapse, coarsen, etc, have already been identified by researchers (e.g., Keates
1989, Beard and Mackaness 1991, McMaster and Shea 1992). These operations are
illustrated in figures 1 to 4.

Some of these operations are essentially the same but use different terminology.
For example, combination used by Keates (1989) is in fact the same as aggregation
suggested by McMaster and Shea (1992). Recently, some research into collapse and
aggregation has been carried out (Chithambaram et al. 1991, Monmonier 1983,
Schylberg 1993). Area-patch generalization, which involves selective omission and
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Figure 1. Selection and elimination operations for feature areas.



Area aggregation based on morphological operators 235
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Figure 2. Collapse operation for area features. (@) Area to point, (b) Area to line.

Figure 3. Coursen operation for area features.

Figure 4. Aggregation operation for area features.

aggregation, has also been investigated (Miiller and Wang 1992, Su and Li 1995).
This paper deals with only one of these operations for area features, viz., area
aggregation. The main purpose of this study is to provide some techniques which
are mathematically more elegant.

2.2. Area aggregation: a two-step process
By a closer examination, the authors find that the aggregation process can be
decomposed into two components (or two steps),
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(@) Natural combination, and
(b) Shape refinement.

The first step combines those area features which are so close that they are not
visually separable after a scale reduction (hence the term ‘natural’ being used). The
critical value of the closeness is called threshold of separation. This combination
process should happen naturally with scale reduction, albeit uncontrolled, as will be
shown later. Also, after combining a number of small features, it is possible that the
boundary of-the resulting feature becomes so very irregular that a simplification
process is needed. This simplification process is called shape refinement here. Two
methods for shape refinement are proposed, viz convex hull and irregularity filtering
(see later).

Both area combination and shape refinement will be discussed in detail and
algebraic models for the two step processes will also be described. These models are
in raster mode and built upon the operators developed in mathematical morphology.

3. Mathematical background: operators in mathematical morphology

Using mathematical morphology to build mathematical models for generalization
of spatial data means to build models for these operations upon the two basic
operators developed in mathematical morphology, i.c., dilation and erosion. These
can be compared to +, —, x and = in ordinary algebra. In order to facilitate the
discussion of the mathematical models developed by the authors, the basic concepts
in mathematical morphology are introduced here.

3.1. Two basic operators in mathematical morphology

Mathematical morphology is a science of form and structure, based on set theory.
It was developed by French geostatistical scientists G. Matheron and J. Serra in the
1960s (Matheron 1975, Serra 1982). Since then it has found increasing application
in digital image processing. Efforts have also been made by researchers to apply
morphological tools to map generalization (Li 1994, Li and Su 1995, Su and Li
1995) and mapping related sciences, such as digital terrain modelling (Li and Chen
1991). The two basic operators are defined as follows (see Serra 1982, Haralick et al.
1987):

Dilation: A®@B={a+b:ae A, be B} =uU,cp4, (1)
Erosion: A®B={a:a+be A, be B} = NnypA, (2)

where A is the image to be processed and B is called the structuring element. In
equation (1), it is called ‘dilation of A by B’ and in equation (2) ‘erosion of A by B’.
Examples of these two operators are given in figure 5, where the features are repres-
ented by black pixels. (The origin of a structuring element is considered to be its
geometric centre if there is no other specific indication).

3.2. Structuring elements

The structuring element is a critical element in any morphological operation and
it can be compared to the kernel (or mask) in a convolution operation. Indeed, it is
through the convolution with the structuring element that a morphological operator
changes the shape of the original image (or object). A structuring element can take
any shape (square, cross) and size (e.g., 2 x 2 or 3 x 3). Figure 6 shows some of the
possible shapes, i.e., circular, diagonal, linear, square and cross.
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Figure 5. Two basic morphological operators: dilation and erosion. (a) Original image A,
(b) The structuring element B, (c) A dilated by B (A@B), (d) A eroded by B (A®@B).
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Figure 6. Some possible structuring elements. (a) Circle, (b) Diagonal, (c) Linear, (d) Square,
(e) Cross.

Here, ‘circular’ means that it is used to approximate a circle in discrete raster
metrics.

3.3. Other morphological operators

If a symmetric structuring element such as those shown in figure 6 (d) or figure 7 (b)
is used for dilation, then the shape of the original image will be expanded uniformly
along all directions. The dilation in this particular case is called expansion. Similarly,
the erosion in this case is called shrink. These two special operations are illustrated
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Figure 7. Expansion and shrink: special cases of dilation and erosion. (a) The original image
A, (b) The structuring element B, (c) Expanded image C = A@B. (d) Shrunk image D = A®B.
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in figure 7(c) and figure 7(d). Therefore, the expansion and shrink operations used
in ordinary image processing techniques are simply special cases of dilation and
erosion. '

Based on these two basic operators, i.e., dilation and erosion, a number of other
operators have also been developed, such as closing, opening, thinning, thickening,
hit or miss, conditional dilation, conditional erosion, conditional thinning, condi-
tional thickening, sequential dilation, conditional sequential dilation, and so on (see
Serra 1982, Haralick et al. 1987). Among them, the opening and closing operators
are very suitable for the manipulation of area features. These two operators are
defined as follows:

Open: AoB=(A0B)®B (3)
Close: AeB=(A®B)®B (4)

where A is the original feature and B is the structuring element. Examples of these
two operators are given in figure 8.

4. Algebraic models for natural combination of area features
As has been discussed in §2.2, two steps are involved in the aggregation process,
i.e. natural combination and shape refinement. This section will discuss the first step.

4.1. A general model
Before discussing in detail the algebraic models for feature combination, it is
appropriate to discuss the general form of algebraic models. In general, an algebraic
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Figure 8. Opening and closing operators. (a) Original feature A, (b) The structuring element,
(c) A is opened by B: AOB, (d) A is closed by B: A@B.
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model based on morphological operators can be expressed as follows:
T=G,(B,)G,(B,) "°_Gn(Bn) (5)

where G; is a morphological operator and B; is a structuring element. The key is to
determine the structuring element B; used in equation (5). Each structuring element
B; can be described by two basic parameters, i.e., shape and size. These can be
represented by some mathematical expressions. The formula for the size of a structur-
ing element can be written as follows:

Bsize=F(Ss’St) (6)

where ‘F is a function which governs the size of the structuring element, 1:S; is the
source scale and 1:8, is the target scale of the spatial data; B, is the size of the
structuring element, which means the maximum pixel number crossing the origin of
the structuring element. For example, the sizes of the structuring elements shown in
figure 6 are S, 3, 4, 3 and 5 respectively. Similarly, the formula for the shape of a
structuring element can be written as follows:

Bshape = H(Oshape) (7)

where Oy, is the shape of original feature; and H is a function to determine the
shape of the structuring element according to Ogpe-

4.2. An algebraic model for area combination

To develop an algebraic model for area combination means to make equation
(5) specifically for combination purposes. Through an analysis of the characteristics
of area combination, the following simple algebraic model is suggested:

C=(A®B,)0OB, (8)

where A is the image showing the original features and B, and B, are the two
structuring elements. When B, = B,, equation (8) becomes the closing operator. The
success of applying this model to area combination depends on the proper size and
shape of structuring elements B; and B,. A discussion of how to determine these
two parameters will be given in the next two sub-sections.

4.3. Determining the size of structuring elements for the combination model

To determine the appropriate size of a structuring element, scale is the main
factor to be considered. In other words, the size of the structuring element is
dependent on the source scale and the target scale of the spatial data. This is obvious.
When the scale is reduced N times, the space between two map features in terms of
map distance will also be reduced N times. Therefore, it can be reasoned that the
appropriate value of the structuring elements in equation (8) can be calculated as
follows:

Bsize = %‘ggﬂ X Ds (9)
source
where 1:S;,,,.c and 1:8S,,,,., are the scales of the source and target data, respectively.
D, is the distance at source scale in terms of the number of pixels below which two
objects on the source map cannot be further separated. This value is the threshold
of separation which is approximately 0-2mm in terms of map distance. By, is the
size of the structuring element in terms of the number of pixels at target scale.
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If a symmetric structuring element with the origin at its centre is to be used, then
the dimension of the structuring element should be an odd number. In this case,
equation (9) can be written as follows: :

Starge
INT(-'“££ xDs+0-5)

Byse=INT | —— 55— =5 x 241 (10)

where INT means the integer part of the value. Figure 9 shows some structuring
elements of different sizes, which can be used for various scale reductions. Figure 10
demonstrates the transformation process for area combination based on equation
(8) and equation (10). In this particular case, figure 10(a) shows a group of area
features on the original map with scale 1:S. Figure 10(b1), (c1), (d1) and (el) are the
results obtained by applying equation (8) to the original features with the structuring
element shown in figure 9 (a), (b), (c) and (d) respectively. After this process, the data
are combined to suit the representation at the target scale.

4.4. Determining the shape of structuring elements for the combination model

The global and general shape of area features need to be kept after the combina-
tion operation. To do so, the shape of the structuring element should be kept in
accordance with the original shape of the area features. Shapes such as circle, square,
line and diagonal are among the possible choices of structuring elements for area
combination. In general, it is suggested that rectangular structuring elements be used
for rectangular features and circular structuring elements be used for curved features
(i.e., with natural shapes). The examples shown in figures 11 to 17 show the combina-
tion of various area features with different types of structuring elements.

5. Algebraic models for shape refinement

In the previous section, the first step of the aggregation process, i.e., area combina-
tion, was discussed. The algebraic model is given in equation (8) and the determina-
tion of the size and shape of the structuring elements for this model have been

(@ ® (© @

Figure 9. Structuring elements used at different scales. (a) For 2 x reduction, (b) For 5 x
reduction, (c) For 7 x reduction, (d) For 10 x reduction.

Figure 10. Combination of area features at different scales. (@) Area features to be aggregated,
(b1) Combined for 2 x scale reduction, (b2) Combined image 2 x reduced, (b3) Original
image 2 x reduced, (c1) Combined for 5 x scale reduction. (c2) Combined image 5 x
reduced, (c3) Original image 5 x reduced, (d1) Combined for 7 x scale reduction,
(d2) Combined image 7 x reduced, (d3) Original image 7 x reduced, (¢e1) Combined
for 10 x scale reduction, (e2) Combined image 10 x reduced, (e3) Original image
10 x reduced.
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(@) (0)

Figure 11. Combination of rectangular features (I). (a) Original features A, (b) Structuring
element B =B, = B,, (c) Combined area C=A-B.

®) ©

Figure 12. Combination of rectangular features (II). (@) Original features A, (b) Structuring
element B =B, = B,, (c) Combined area C = A-B.
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Figure 13. Combination of inclined rectangular features. (a) Original features A,
(b) Structuring element B = B; = B,, (c) Combined area C = A-B.
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Figure 14. Combination of curved area features (I). (a) Original features A, (b) Structuring
element B = B, = B,, (c) Combined area C=A-B.

origin

discussed in §4.3 and 4.4. This section will discuss the second step, i.e. shape
refinement.

It can be seen from figure 10 to figure 17 that, in some cases, the area features
resulting from the combination process may appear very irregular, so that a shape
refinement may need to follow to satisfy the graphic presentation. This is especially
the case if the difference between source scale and target scale is large and where
many small features are combined. Figure 10(e2) is an example. There are two
solutions for shape refinement. The first is to apply a sequential thickening operator
to obtain the convex hull of the combined object, and the second is to apply the
opening operation with a combination of other operators to simplify the shape.
These two methods will be discussed in the next two sub-sections.
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Figure 15. Combination of curved area features (II). (a) Original features A, (b) Structuring
elements, (c) Areas combined C = A-B,, (d) Combined area C = (A@®B,)OB,.

(a) (®) (©

Figure 16. Combination of curved feature area features (III). (a) Original features A,
(b) Structuring element B, (c) Combined area C= A-B.

®) (o)
Figure 17. Combination of curved area features (IV). (@) Original feature A, (b) Structuring
element B, (c) Combined area C=A"‘B.

5.1. Convex hull formation
The algebraic mode! for forming the convex hull of an irregular area feature is
as follows:

C,=C®{B;} (11)
where @ is an operator called thickening, through which the original image will be

thickened. {B;} means a series of special structuring elements for thickening purposes,
. which are shown in figure 18. The thickening operator is a combination of a number
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d 0B B & B B

Figure 18. The series of structuring elements for convex hull formation (“x” means “don’t
care”).

b | |

(a) (b)

Figure 19. Shape refinement of an area feature—the convex hull. (@) The area feature com-
bined and reduced as shown in figure 10(e2), (b) The area feature refined by a convex hull.

of other morphological operators. This requires in-depth discussion beyond the scope
of this paper, for which further information can be found in Serra (1982).

This model (i.e., equation (11)) means that the convex hull is formed through
sequential thickening by a set of structuring elements {B;}. By applying equation
(11) to the area feature resulting from the combination process shown in figure 10 (e2),
the result as shown in figure 19(b) can be obtained.

5.2. Irregularity filtering

The above solution is suitable for those shapes Wthh are very close to rectangular,
or where a rectangular shape is required for the final result (e.g., in the case of a
block of buildings). However, it doesn’t necessarily work well for other cases. Indeed,
in other cases, the following procedure, consisting of a set of morphological operators,
will produce more realistic results:

(@) To eliminate those small convex areas on feature C, using an opening operator:
D=CoB (12)

(b) To form the convex hull of the opened area D:

(c) To obtain the complementary set of the opened area within the convex area:
E=C,—-D (14)

(d) To eliminate small convex areas on the area E, using an opening operator:
F=EoB (15)

(e) To obtain the complementary set of F:
G=C,—F (16)

where B is a structuring element and is different from {B;}. Here, the size of B should
be only half the size of the structuring elements used in figure 9.
This is a roundabout procedure. The ultimate aim is to cut off small convex
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b 1

(@ (b)

Figure 20. Shape refinement for an area feature—an alternative. (@) Combined and reduced
image as shown in figure 10 (e2), (b) Refined area feature.

areas and fill up small concave areas. By applying this procedure to the resulting
feature shown in figure 10(e2), a result as shown in figure 20(b) is obtained. This
result looks more reasonable.

6. Conclusions

In this paper, one of the many operations for area features, i.e. aggregation, is
discussed. The aggregation operation is decomposed into two components, viz., a
combination sub-process and a shape refinement sub-process. Algebraic models for
this generalization operation are built upon the operators developed in mathematical
morphology.

The algebraic model for the first sub-process involves combining area features
according to scale. The key to success is the correct determination of the shape and
size of the structuring elements to be used. The size of the structuring element is
dependent on source scale and target scale of the spatial data. Regarding the shape
of the structuring element, it is recommended that circular shape should be used for
curved area features and rectangular shape for rectangular area features.

For the second sub-process, i.e., to smooth out irregularities, two solutions are
outlined. One is to form a convex hull of the area feature resulting from the
combination operation, and the other is to eliminate small variations along the
boundary using a more complex procedure. The convex hull method is only suitable
for the cases when the final result should be a rectangular shape. These algebraic
models seem to work well, as revealed in examples.

However, no claim is made by the authors that the results obtained from these
algebraic models are clearly superior to results from other methods. Rather, the
main aim of this paper is to offer some techniques and an alternative for area
aggregation which is mathematically more elegant than other conventional methods,
so that a mathematical basis might be established for this generalization operation.
Indeed, in addition to their mathematical elegance, these models are also more
generic than those developed using expansion and shrink operators, because as
demonstrated these two operators are only special cases of dilation and erosion.

Finally, it should also be noted that this paper deals only with geometric issues
and the algebraic models operate at a very basic level. To make a generalization
system successful, higher level semantic information and other cartographic know-
ledge is needed to control the effect of the low-level models described in this paper.
Indeed, this should be a topic for future research.
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