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Abstract. Models of spatial relations are a key component of geographical
information science (GIS). Efforts have been made to formally define spatial
relations. The foundation model for such a formal presentation is the 4-intersection
model proposed by Egenhofer and Franzosa (1991). In this model, the topological
relations between two simple spatial entities A and B are transformed into point-
set topology problems in terms of the intersections of A’s interior and boundary
with B’s interior and boundary. Later, Egenhofer and Herring (1991) extended
this model to 9-intersection by addition of another element, i.e. the exterior of an
entity, which is then defined as its complement. However, the use of its complement
as the exterior of an entity causes the linear dependency between its interior,
boundary and exterior. Thus such an extension from 4- to 9-intersection should
be of no help in terms of the number of relations. This can be confirmed by the
discovery of Egenhofer et al. (1993). The distinction of additional relations in the
case where the co-dimension is not zero is purely due to the adoption of definitions
of the interior, boundary and exterior of entities in a lower dimensional to a
higher dimension of space, e.g. lines in I-dimensional space to 2-dimensional
space. With such adoption, the topological convention that the boundary of a
spatial entity separates its interior from its exterior is violated. It is such a change
of conventional topological properties that causes the linear dependency between
these three elements of a spatial entity (i.e. the interior, boundary and exterior)
to disappear, thus making the distinction of additional relations possible in such
a case (i.e. the co-dimension is not zero).

It has been discussed that the use of Voronoi-regions of an entity to replace its
complement as its exterior in the 9-intersection model would solve the problem
(i.e. violation of topological convention) or would make this model become more
comprehensive. Therefore, a Voronoi-based 9-intersection model is proposed. In
addition to the improvement in the theoretical aspect, the Voronoi-based 9-intersec-
tion model (V9I) can also distinguish additional relations which are beyond topolo-
gical relations, such as high-resolution disjoint relations and relations of complex
spatial entities. However, high-resolution disjoint relations defined by this model
are not purely topological. In fact, it is a mixture of topology and metric.
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1. Introduction

Spatial reasoning is a major requirement for a comprehensive GIS (Frank 1991)
because it offers users new spatial information, which has not been explicitly recorded
and which is otherwise not immediately available in the form of raw data (Egenhofer
1994). To facilitate such reasoning, spatial relations between entities have to be
established. In this sense, some researchers even argue that spatial relations between
spatial entities are as important as the entities themselves.

Over the past two decades, research has been conducted on how to apply
fundamental mathematical theories for modelling and describing spatial relations
(Peuquet 1986, Jungert 1988, Chang et al. 1989, Lee and Hsu 1990, Kainz 1990,
Egenhofer and Franzosa 1991, Egenhofer and Al-Taha 1992, Hadzilacos and Tryfona
1992, Smith and Park 1992, Cui et al. 1993). Here, no attempt has been made by
the authors to discuss the various types of spatial relations. Instead, this paper
concentrates on topological relations because ‘topological properties are the most
fundamental, compared to Euclidean, metric and vector spaces’ (Egenhofer 1991).

Topological relations are those which are invariant under topological transforma-
tions. That is, they are preserved if the entities are translated, rotated or scaled
{Egenhofer 1991). A formalization of topological relations has been investigated in
later 1980s based on point-set topology (Guting 1988, Pullar 1988, Egenhofer and
Franzosa 1991). The results of such a formalization are the so-called 4-intersection
(Egenhofer and Franzosa 1991) and 9-intersection models {Egenhofer and Hering
1991). Indeed, the former is the foundation model based on intersections and the
latter is an extension of the former (Egenhofer et al. 1993). In these models, the
topological relations between two entities A and B are defined in terms of the
intersections of A’s interior, boundary and exterior with B’s interior, boundary and
exterior. The exterior of an entity is then represented by its complement.

The 9-intersection model has been regarded as the most comprehensive model
for topological spatial relations so far. Analysis of this model has been made by
researchers (Egenhofer 1991, Egenhofer et al. 1993, 1994, 1995, Clementini et al.
1994). This model has been used or extended for examining the possible topological
relations between areas in discrete space (Egenhofer and Sharma 1993, Winter 1995),
for modelling conceptual neighborhoods of topological line-area relations (Egenhofer
and Mark 1995), for grouping the very large number of different topological relations
for point, line and area features into smaller sets of meaningful relations (Clementini
et al. 1993), for describing the directional relations between arbitrary shapes and
flow direction relations (Abdelmoty and Williams 1994, Papadias and Theodoridis
1997), for deriving the composition of two binary topological relations (Egenhofer
1991), for describing changes of topological relations by introducing a Closest-
Topological-Relationship-Graph and the concept of a topological distance
(Egenhofer and Al-Taha 1992}, for analysing the distribution of topological relations
in geographical data sets (Florence and Egenhofer 1996), as well as for formalizing
the spatio-temporal relations between the parent-child parcels during the process of
land subdivision (Chang and Chen 1997). These investigations have contributed
significantly to the development of state of the art, spatial data models and spatial
query functionality (Egenhofer and Mark 1995, Mark et al. 1995, Papadis and
Theodoridis 1997).

However, as will be discussed in §2, the extended 9-intersection model has two
types of imperfections in theory. To improve this situation, this paper presents a
modified model, called the Voronoi-based 9-intersection model, which results from
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the replacement of the complements of spatial entities by their Voronoi regions and
represents a significantly extension of an earlier conference paper (Chen et al. 2000).

Following this introduction is a review and analysis of the existing 9-intersection
model. In §2 the theoretical imperfections of this model are examined and the
modified 9-intersection model, the Voronoi-based 9-intersection model, is presented
in §3. The possible topological relations using the modified model are discussed in §4.

2. A critical examination of the 9-intersection model

In order to present an improved model in the next section, it seems logical to
conduct a critical examination of the existing 9-intersection model in this section to
see what imperfections it possesses and what improvements can be made.

2.1. The development of the 9-intersection model

In the early stages of research, the 4-intersection model of topological relations
was proposed (Egenhofer and Franzona 1991) based on point-set topology. The
principle is as follows: Suppose A and B are two sets representing two entities, then
the topological spatial relations between A and B can be described by values of the
4-tuples as follows:

A°nB®  A°N0B
(1)

R4 (A, B)=
(4. B) (6AmB° dANGB

Where, 04 is the boundary of 4 and A° is the interior of 4 and the annotation for B
is the same. For example, if 4 and B are disjoint, then the values for these 4-tuples are
[—¢, —¢, —¢, —¢]. For another example, if A and B are overlapping, then the 4 values
becomes [—, —¢, —¢, —¢]. Here ¢ means empty and ‘—¢* means non-empty. There
are two possible values for each of the 4 intersections, one can distinguish 2. Eight
relations can be identified between two areas as shown in figure 2(a). These relations
are mutually exclusive and form a partition of the set of all relations such as ‘disjoint’,
‘overlap’, ‘touch’, ‘equals’, ‘cover’, ‘in’, etc. This is the first model of its kind and it lays
a solid foundation for further research of topological spatial relations.

However, as pointed out by Clementini et al. (1993), there are some cases where
some confusion may be caused by this 4-intersection model. Indeed, the limitations
of the 4-intersection model have been extensively discussed by (Egenhofer et al.
1993). Figure 1 illustrates only some examples. For this reason, Egenhofer and his

R4(A,B) g @ -2 <

g ~Q 2 -9
R,(AB)|2 @ @ 5 o -@ -0 © -0 -2 2 © -0 2 -©
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Figure 1. Tmprovement of the 9-intersection over the 4-intersection model. (For the first two
relations, the 4-intersection model fails to distinguish between them, however in the
9-intersection model, the distinction is clear. The situation is similar for the last 3
relations).
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collaborators (Egenhofer and Herring 1991) made an extension to the 4-intersection
model, leading to a new mode! called the 9-intersection model, as follows:

A°~B°  A°~0B  A°~B~
Ro(A,B)=| 04nB° 04n3B 0ANB~ (2)
A nB® A ndB A nB~

Here, A°, 4 and A~ mean the interior boundary and exterior of A, respectively.
The annotation for B is the same. In this model, the exterior of A4 is normally defined
as the complemerft (other definitions of exterior would not fulfill the setting of the
9-intersection model). It is clear, as shown in figure 1, some of the limitations
associated with the 4-intersection model are overcome in this model.

The 9-intersection model has been the most popular mathematical framework
for formalizing topological spatial relations. This model considers whether the value
(i.e. empty or non-empty) of the 9-intersections, a range of binary topological rela-
tions, can be identified (Egenhofer and Sharma 1993). For instance, eight relations
as shown in figure 2(a) can be identified between two areas in R?, i.e. disjoint, meet,
equal, inside, contains, covers, covered-by and overlap (Egenhofer and Sharma 1993).
Similarly, as shown in the rest of figure 2, topological relations between area-line,
area-point, line-line, line-point as well as point-point can be defined (Egenhofer 1993,
Egenhofer et al. 1993, Sun et al. 1993).

These relations are mutually exclusive. That is, only one of them holds at any
time for a particular configuration.

2.2. A critical comparison of the 4- and 9-intersection models

It would then be of interest to have a critical comparison of the 4- and 9-
intersection models. Indeed, such a comparison has already been made by Egenhofer
and his collaborators and some of their conclusions are directly quoted (Egenhofer
et al. 1993) as follows:

(a) With the 9-intersection model, the same set of area-arca relations can
be found as the 4-intersection model. No additional relations, due to the
consideration of exterior intersections, are possible.

(b) As expected, the 9-intersection model reveals the same number of line-
line relations in IR! as the 4-intersection model. However, in IR?, the 9-
intersection identifies another 25 relations for relations between two simple
lines (i.e. line with exactly 2 end points). Another 21 relations are found if
the lines can be branched so that they have more than two end points.

(c) With the 9-intersection model, 19 topological relations between a simple line
and a region in IR? can be found and a 20th configuration is possible if the
line is branched.

Egenhofer et al. (1993) have also pointed out when the addition of exterior
matters. They found:

(a) If the two entities are simply connected, their boundaries form Jordan Curves
and the entities have co-dimension 0, then the same eight topological relations
can be realized as between two areas in IR%
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Figure 2. Topological spatial relations defined by the 9-intersection model.

(b) If the two entity are simply connected, each boundary forms a separation,
and the entities have co-dimension 0, then the same eight topological relations
can be realized as between two lines in IR!

2.3. Imperfection of the 9-intersection model

The discussions presented in §2.2 reveal some basic facts about the relations
between the 4- and 9-intersection models. Tt says that the number of relations existing
between entities depends on the dimensions of the space with respect to the dimen-
sions of the entities and on the topological properties of the entities embedded in
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that space (Egenhofer and Sharma 1993). In other words, if two entities are simply
connected, they have co-dimension 0 and each boundary forms a separation between
interior and exterior, then the 4- and 9-intersection models are equivalent. One
would then wonder why this happens. A close examination of the definition of
the 9-intersection model reveals that this is due to the definition of exterior as
complement. The problem is illustrated in figure 3.

In figure 3, 4 and B are two areas (regions); C is a larger area containing both
A and B and can be considered as the universe of the study area. It is clear that the
following equation holds:

C=A°4+0A+A"
{C=B°+6B+B“ (3)
or
A" =C—(4°+04)
{B‘zC——(B‘H—&B) )
By substituting (4) into (2), the following model is obtained:
A%~ B° A°néB A°~(C—B°—éB)
Ry(A4,B)= 0ANB° 0ANOB 0AN(C—B°—0B)
(C—A°—0A)nB® (C—A°—0A)n3B (C—A°—0A)n(C—B°—0B)
(5)

It means that, given an entity A, its complement is completely determined by a
linear function of C and itself. As C is a constant space, therefore, the exterior
(defined as the complement), boundary and interior of 4 (or B) are linearly dependent.

(a) An area object A (b) An area object B

(c) An area space C (d) C containing A and B

Figure 3. The definition of the exterior of an entity A (or B) as its complement in the 9-
intersection model which causes the exterior of 4 (or B) to be completely determined
by C and itself, ie. A~ =C—A=C—(A4°+654).
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Therefore, there is a one-degree redundancy in this model. As a result, no additional
information can be provided by extended 9-intersection model. This explains why
the result of the 9-intersection model is equivalent to the 4-intersection model in this
case (Egenhofer et al. 1993). In other words, the extension from 4-intersection to
9-intersection is of no help under these conditions.

Then one may wonder why additional topological relations could be distinguished
by the 9-intersection model, if the co-dimension constraint is relaxed such that one
or both entities can be embedded in a higher-dimensional space. The question could
be asked in an alternative way, i.e. why additional relations can be distinguished if
a line is involved (i.e. line-line and line-area).

To answer this query, one should examine the definitions of the three basic
components of a line, i.e. the interior, boundary and the exterior, in both 1- and 2-
dimensional space. In 1-dimensional space IR, the boundary of a line is defined by
the two end poirits. The boundary separates its interior from its exterior. However,
in a 2-dimensional space IR?, a line’s boundary doesn’t separate the interior from
its exterior any more, as pointed out by Egenhofer et al. (1993). In other words, the
adoption of a definition in IR' to IR? causes the change of a basic topological
property, i.e. Proposition 3.4 in Egenhofer’s original paper (Egenhofer and Franzosa
1991, p. 166). Although some remedies have been made by Egenhofer and his
collaborators (Egenhofer et al. 1993), this adoption causes at least inconsistency for
the property of the line’s boundary.

Due to this change of the topological properties of the boundary of an entity,
the linear dependency between interior, boundary and exterior (as complement in
the 9-intersection model) as expressed by equations (3) and (4) disappears so that
additional topological relations can be distinguished by the 9-intersection model
in comparison with the 4-intersection model. In other words, the distinction of
additional relations by the 9-intersection is purely due to the simple adoption
of 1-dimensional definitions of the interior, boundary and exterior of lines to a
2-dimensional space.

The questions arising are: ‘is there any easy solution to remedy these two type
of imperfections in the theoretical background of the 9-intersection model?” The
answer to this question is yes and it will be presented in the next section.

3. The Voronoi-based 9-intersection model: an improved solution
After the imperfections have been pointed out, it seems logic to find out a solution
if possible.

3.1. The need of an alternative to the exterior of an entity

As discussed in the previous section, there are two imperfections of the 9-
intersection model The first one is that it defines the exterior of an entity as its
complement so that the interior, boundary and exterior are linearly dependent. This
causes the 9-intersection model to not work as effectively as it should. To remedy
this imperfection, the exterior of entity should be defined as something else instead
of its complement.

The second imperfection is that it adopts the 1-dimensional definition of a line
to TR? so as to cause an inconsistency of a line’s topological property in IR! and
IR?, ie. the boundary of an entity doesn’t separate its interior from its exterior in
IR2. This can be remedied by making use of a entity’s other components rather than
its exterior, if feasible.
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It has been found that, if the Voronoi diagram of an entity (as shown in figure 4),
is used to replace its exterior in the 9-intersection model, the theoretical imperfections
of this model could be improved.

3.2. The Voronoi region as an alternative to the exterior of an entity

Then one may wonder why the Voronoi region of an entity is such an appropriate
alternative for its exterior in the 9-intersection model. To answer this query, a
discussion of the definition and properties of a Voronoi region is needed.

A Voronoi region is a ‘region of influence’ or ‘spatial proximity’ for each spatial
data point. All these Voronoi regions together will form a pattern of packed convex
polygons covering the whole plane (neither any gap nor any overlap). This result of
tessellation is called a Voronoi diagram.

Voronoi diagram is essentially ‘a partition of the 2-D plane into N polygonal
regions, each of which is associated with a given point. The region associated with
a point is the locus of points closer to that point than to any other given point’ (Lee
and Drysdale 1981). The polygonal region associated with a point is normally called
the ‘Voronoi region’ (or Thiessen polygon) of that point and it is formed by perpendic-
ular bisectors of the edges of its surrounding triangles (figure 4). Figure 4 shows only
the case of point entities. In fact, it is also possible to define and compute the
Voronoi-diagrams of any spatial entity such as points, lines and areas (figure 5).
Indeed, the definition of Voronoi-region can also be modified to cover complex
entities. Figure 6 illustrates such a modified definition. More detailed discussion of

(a) Voronoi region of a point (b) Voronoi diagram

Figure 4. Voronoi region and Voronoi diagram.

Figure 5. Voronoi diagram of point, line and area entities.
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Figure 6. Voronoi diagram of complex spatial entities.

how to compute Voronoi-diagrams for complex entities are described by Li et al.
(1999).

The properties of the Voronoi diagram have been studied by many researchers
(Gold, 1989, 1991,1992, Wright and Goodchild 1997), and it has found many applica-
tions (Yang and Gold 1994, Gold et al. 1996, Edwards et al. 1996, Hu and Chen
1996, Chen and Cui 1997). Algorithms for the computation of Voronoi diagrams in
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vector mode have been summarised by Aurenhammer (1991) and Ohya et al. (1984).
An algorithm in raster mode has been developed by Li et al. (1999a), where the
definition and computation of Voronoi diagrams for complex spatial entities have
also been addressed. .

In IR?, Voronoi regions of all entities together form a contiguous and non-
overlapping tessellation of space. The Voronoi region of an entity is determined by
partitioning space with other neighbouring entities and therefore is a function of the
locations and shapes of its neighbours and itself. Therefore, the use of the Voronoi
region of an entity to replace its complement (as exterior) in the 9-intersection model
avoids the linear dependency expressed in equations (3) and (4). In the case of a
line, the use of the Voronoi-region of an entity to replace its exterior avoids the
inconsistency of a line’s topological property in IR! and IR?. This is because the
Voronoi-region of a line has a similar function of the line’s exterior but there is no
such requirement that a line’s boundary separates its interior from its Voronoi-
region. It means that the Voronoi-region of an entity is really the appropriate
replacement for the exterior in the 9-intersection model.

3.3. The Voronoi-based 9-intersection model
By replacing the complement of an entity with its Voronoi region, a Voronoi-
based 9-Intersection (VII for brevity) framework can be formulated as follows:

A°AB®  A°~OB  A°~BY
Ryo(4,B)=| 04nB° 0AnNOB A°AB" (6)
A'nB®  A°'~OB A'NB*

where 4" is Entity A’s Voronoi region and B’ is Entity B’s Voronoi region.

4. Topological relations with VI

After proposing the model, it is necessary (4) to examine the spatial topological
relations defined by this model, and (b) to describe what additional relations this
new model may be able to distinguish.

4.1. Topological relations of simple entities with V9I

Topological relations between point, line and area entities can be formalized with
the new model, including relations between area-area, line-area, area-point, line-line,
line-point and point-point entities. The results are listed in table 1. A diagrammatic
representation of these relations is given in figures 7-12.

As can be seen from figure 7, among the thirteen topologically distinct relations

Table 1. Distinguished topological relations using V9I.

Cases Number
AA Area/Area 13
LL Line/Line 8
LA Line/Area 13
PP Point/Point 3
PL Point/Line 4

PA Point/Area S
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Figure 9. Topological relations for area-points distinguished by the V91 model (the
9-intersections are shown on the left and the V9-intersection on the right).

between two areas distinguished by the V9L, seven of them could not be distinguished
using the original 9-intersection model. The advantage of V91 model is therefore clear.

4.2. Topological relations of complex entities with V91

With the V91, the distinction of more relations of spatial entities is also possible
in the case of a complex entity (figure 13).

One characteristic of this new model is that 04ndB and A"~ B" would both take
non-empty values when the boundary of entity 4 meets with that of entity B as their
Voronoi regions would also meet according to the definition of the Voronoi diagram
(as illustrated in figure 13(a)). In addition, the boundary of entity A meets with B*
and B’s boundary meets with 4”. As a result, the relation meeting between area
entities as defined by the Voronoi-based 9-intersection model is therefore quite
different from that defined by the original 9-intersection model. For an entity with
a hole (e.g. B as shown in figure 13(b)), if the boundary of the other entity 4 meets
its inner boundary, A’s Voronoi region intersects B’s inner boundary, resulting in 4
non-empty elements as follows: dANOB=—~, A’ndB=—0, A'nB"'=—- and
0ANB' = —@. Moreover, if the whole body of A is contained in B’s hole, it means
that A’s interior overlaps with the convex of B and A°~B" = —@. These character-
istics make the Voronoi-based 9-intersection model capable of distinguishing relations
between complex entities with holes.

The example shown in figure 13{b) has the same original 9-intersections, but has
different Voronoi-based 9-intersections than those in figure 13(a). The example illus-
trated in figure 13(d) is a contained-by relation which has the same 9-intersections
as the contains relations shown in figure 13(e). The Voronoi regions touch and there
is no intersection of boundaries and interiors between the two entities. However, the
boundary and interior of the contained entity intersect with the Voronoi convex of
the other entity. Another example, given by figures 13 (f~g), shows a line meeting a
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Figure 10. Topological relations for line-line relations distinguished by the V91 model.

homogeneously 2-dimensional and connected area B and the line falling into an
area’s hole. :

It should be noted here that spatial entities with holes have also been addressed
by Egenhofer et al. (1994) with an extension of the 9-intersection. However, no
attempt is made here to address this extended model. Rather, this section simply
illustrates what the new model, V9I, can do for complex spatial entities.

4.3. High-resolution of disjoint relations: Beyond topological relations

Another characteristic of this new model is that 4°nB” would be non-empty
when two entities are adjacent, such as 4 and B in figure 14(a), because the Voronoi
region of A shares the same boundary with that of B. However, when there is an
entity C between A and B (figure 14(b)), their Voronoi regions are separated by that
of C and A"~ B’ is empty.

It means that the V9I model provides higher resolution for disjoint relations of
spatial entities. Indeed K-order neighbour relations can be described by using such
a model (Zhao et al. 1999). However, such high-resolution disjoint relations by this
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Figure 11. Topological relations for line-point relations distinguished by the V91 model.
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Figure 12.  Topological relations for point-point relations distinguished by the V91 model.

model is not purely topological. It is, in fact, a mixture of metric and topological
relations, as Voronoi regions may change under topological transformation. Such a
change may result in another version of disjoint relations (figure 15). In figure 15(a),
the disjoint relation of spatial entities A and B can be said as ‘Ist order Voronoi-
adjaceny’ as their Voronoi regions are adjacent. However, after stretching, the relation
becomes 2nd order Voronoi-adjacency’ as the Voronoi regions of A and B are now
separated by another Voronoi region.

5. Discussion and conclusions
In this paper, an examination of the development of intersection-based models
for the formal presentation of topological relations has been made. The 4-intersection
model developed by Egenhofer and Franzosa (1991) was the foundation model.
Later, this model was extended by Egenhofer and Herring (1991) to 9-intersection.
It has been discussed that there are some imperfections in the theoretical aspect
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Figure 13. Resolution of complex spatial relations with the V91 model.

Figure [4. Resolution of disjoint relations with the V91 model.

associated with this extension. One of them is the linear dependency between the
interior, boundary and complement (used for exterior) of an entity so that the
extension of 4-intersection to 9-intersection is of no help, in terms of the number of
relations. This has been confirmed by Egenhofer et al. (1993). Another imperfection
is the adoption of 1-dimensional definitions of line’s interior, boundary and exterior
to a 2-dimensional space so that an inconsistency of a line’s topological property in
IR! and IR? has been caused (Li et al. 1999b).

It has been found that it is this change of conventional topological property that
eliminates the linear dependency between the interior, boundary and complement
(used for exterior) of an entity so that the additional relations can be distinguished
by the 9-intersection model in comparison with the 4-intersection model. In other
words, the distinction of additional relations by the 9-intersection is purely due to
the imperfect definitions of the interior, boundary and exterior of lines in TR?.
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Figure 15. Voronoi-adjacency relations between A and B described by V91. it is not invariant
under topological transformation. Therefore, the high-resolution of disjoint relations
by V91 is not purely topological. (Rather it is a mixture of topology and metric).

Tt has also been pointed out that the use of the Voronoi-region of an entity to
replace its complement as its exterior in the 9-intersection model would solve the
problem or would make this model more comprehensive. The Voronoi region of an
entity is determined by partitioning space with other neighbouring entities and thus
is a function of the locations and shapes of its neighbours and itself. Therefore, the
use of the Voronoi region of an entity to replace its complement as exterior in the
9-intersection model avoids the linear dependency expressed in equations (3) and
(4). In the case of a line, the use of the Voronoi-region of an entity to replace its
exterior avoids the inconsistency of a line’s topological property in IR' and IR?.
This is because the Voronoi-fegion of a line has a similar function of the line’s
exterior but there is no such requirement that a line’s boundary separates its interior
from its Voronoi-region. It means that the Voronoi-region of an entity is really the
appropriate replacement for the exterior in the 9-intersection model. Therefore, a
Voronoi-based 9-intersection is proposed in this paper.

In addition, with this Voronoi-based 9-intersection model (V9I), additional rela-
tions beyond simple topological relations can also be distinguished. One important
type of relation the VII can distinguish is the relation of complex spatial entities
such as spatial entities with holes. Another of type is the high-resolution disjoint
relation. This is very important because about 80% of spatial relations are dis-
joint relations (Florence and Egenhofer 1996). However, such high-resolution
disjoint relations from this model are not purely topological. It is, in fact, a mixture
of topology and metric, as Voronoi regions may change under topological
transformation.

Spatial relations still have unsolved problems. More research in this area is
desirable, but the authors hope that this paper makes a useful contribution to the
research agenda.
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