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INTRODUCTION

The use of contour lines for the representation of the
variations of a 3D surface dates back to the 18th century.
Contouring has been widely regarded as the most effective
means for the representation of 3D variations on a 2D
surface and has therefore been considered as being one of
the most important inventions in cartographic history.
Contours have been used for the representation of
continuous variations of 3D phenomena on topographic
maps, thematic maps and other graphics. Contours are the
most fundamental element of topographic maps. When the
generalization of topographic maps is carried out for either
derivation of maps at a smaller scale from maps at a larger
scale (in the case of cartography) or for “real-time”

zooming (in the case of visualization), contour lines need

to be generalized together with other features.

Contour generalization is an important topic for a
number of reasons. Firstly, a contour is the most
fundamental type of feature on topographic maps.
Secondly, the generalization of contours is an important
and challenging but vexing and unsolved problem in
cartography and geographic information systems (GIS).
Thirdly, it can be regarded as the key step for the
development of a more comprehensive procedure for map
generalization, if the problem can be successfully solved.

This paper describes an integrated technique for the
generalization of contour maps. It integrates an objective
line generalization algorithm based on a natural principle
with a triangulation-based technique for the derivation of a
new line from two neighbouring lines, which will be
required if the new contour interval is not a multiple of the
original contours (e.g. from 2 m to 5 m).

This paper will examine existing approaches for contour
generalization and discuss a technique for the generalization

of contour lines. It will also discuss a triangulation-based
technique for the derivation of a new line from two
neighbouring lines. The integrated technique has been
intensively tested and the results are reported at the end of
this paper, which are followed by some concluding remarks.

A CRITICAL EXAMINATION OF CONTOUR
GENERALIZATION APPROACHES

In contour representation, the quality and/or effectiveness
is determined by a few parameters, mainly the spacing
between contour lines, faithfulness of individual contour
lines to the 3D surface and coherent relationship between
contour lines.

Generalization of contours means to transform the
contour representation from a larger scale to suit the
representation at a smaller scale while the quality and/or
effectiveness of the represcntauon is still compatible at that
level.

In general, two approachcs are possible, ie. direct
generalization and indirect modelling. In the latter, a three-
step procedure is used, i.e. (a) contour data are used to
construct a DTM of the area; (b) the DTM is to be
generalized; and (c) to new contours are to be produced
from the generalized DTM. The resultant contours are
supposed to be generalized. The issue now becomes how
to generalize the DTM. The advantage of this approach is
that there will be a guarantee of no intersection between
contours if appropriate contour interpolation algorithms are
employed. However, so far, no algorithm for the
generalization of DTM surfaces with comprehensive
theoretical basis is known to the authors. In most cases, a
low-pass filter is applied to smoothed out the DTM (e.g.
Weibel, 1987) and there is no theory behind the use of
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such filters. Another disadvantage of this approach is that a
loss in accuracy and/or fidelity may be caused and noise
introduced during the contour/DTM/contour conversion
process.

In the direct approach, individual contour lines are
simplified (generalized) to suit the representation at target
(smaller) scale. The main problem with this approach is
that, as pointed out by many researchers (e.g. Weibel,
1996), most of existing line simplification algorithms
provides no guarantee of intersections (i.e. self-intersection
and cross-intersectioni) except a few {Li and Openshaw,
1992; Wang and Miiller, 1992; de Berg et al., 1995). This
could be the main reason why this direct approach is not
very popular. This is the practical part of the problem. To
avoid intersections, researchers have used some constraints.
One of these approaches is to employ Voronoi diagrams for
points along all contour lines as an extra constraint (Wu,
1987). -

The theoretical part of the problem associated with this
direct approach is that most of the existing so-called line
simplification algorithms employ a strategy of selective
omission of points along the lines. The theoretical
background of these algorithms is the discovery by
Attneave (1954), i.e. some points on an object are richer in
information than others and these points are sufficient to
characterize the shape of the object. These algorithms can
be grouped into three types (Li, 1995), i.e. corner
detection, polygonal approximation and a hybrid technique
(a combination of the first two). The one widely used in
GIS is the Douglas-Peucker (1973) algorithm, which is also
known as Rammer algorithm in computer vision and
pattern recognition (see Li, 1995). Attempts have also been
made to improve this algorithm (e.g. Li, 1988). However,
as has been pointed out by many researchers (e.g. Li,
1993), it is misleading to use these algorithms for line
generalization purposes because the original purpose of
these algorithms were not for line generalization but for
curve approximation (to approximate a curve line using
straight line segment). Although there are also other
algorithms based on spectral analysis (e.g. Boutoura, 1989)
for line simplification (generalization), the experience
gained by the authors reveals that these algorithms are also
not working well.

TECHNIQUE FOR THE GENERALIZATION OF
INDIVIDUAL CONTOUR LINES

To generalize contour lines for the representation at the
target scale, the following conditions must be fulfilled, i.e.
(a) The contour lines must be simplified in structure; (b)
The resultant contours must be smooth enough in
appearance; and (c) The natural characteristics of contour
lines (e.g. being parallel, without self- and cross-
intersections, geometrically similar to the shape of the 3D
surface) must be retained. '

Among available algorithms, Weibel (1996) has made a
critical evaluation and found that the Li-Openshaw
algorithm (Li and Openshaw, 1992) (see Weibel, 1997, p.
124 for terminology) is able to guarantee no self-
intersection: And later in this paper, it will be demonstrated
by experimental testing that other conditions for contour
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generalizations can also be fulfilled by careful

implementation of this algorithm.

Theoretical Basis - A Natural Principle

The so-called Li-Openshaw algorithm (see Weibel, 1997) is
the line generalization algorithm developed by Li and
Openshaw in 1992 and published in the International
Journal of Geographical Information Systems. The
theoretical basis of these algorithms is the so-called natural
principle for objective generalization, discovered by Li and
Openshaw (1993). The natural principle states:

For a given scale of interest, all details about the
spatial variations of geographic objects beyond certain
limitation are unable to be represented and can thus
be neglected.

From this principle, a simple corollary can be derived as
follows:

By neglecting all spatial variations within a certain
limitation, natural results can be obtained for the
generalization.

This limitation is called the smallest visible object (SVO) by
Li and Openshaw (1992).

Implementation of Algorithm for Individual Lines

This corollary can be easily implemented. This can be
demonstrated by Figure 1. It shows that, for a given target
scale, all spatial variations within certain limitations can be
completely neglected and a point can be used to represent
this limitation (area). The appropriate size of this limitation
is about 0.6-0.7 mm at map scale, as concluded by Li and
Openshaw (1992) based on intensive experimental testing.

Based on this natural principle, Li and Openshaw (1992)
have implemented three algorithms for line generalization
and they have recommended the ‘‘vector-raster” algorithm.
In this algorithm, the average of the coordinates of the first
and last intersections between the line and the grid cell is
taken as the position of the new point (to represent the cell)
(see Figure 2). Of course, the cells can also be overlapped to
produce more realistic results and to avoid the dependency
of starting points, as suggested by Li and Openshaw (1992).
More detailed discussion lies outside of this paper.

In the implementation of the algorithm, special attention
needs to be paid to thin necks of contour lines. Figure 3(a)
shows an example. If the neck is too thin (thinner than two
cells), there are three solutions, i.e. to throw the small
convex parts away (Figure 3b), to form a close loop for the
small convex parts (Figure 3c) or to exaggerate the thin
necks (Figure 3d). However, some additional constraints
must be imposed while exaggerating the concave parts. In
this implementation, this option is omitted. In fact, the first
two options are not isolated but rather inter-related. If the
convex parts are too small (i.e. occupying less than four
cells), then the first option is taken, or else the second
option is taken.

Implementation of Algorithm for Contour Lines as a Whole

As mentioned in the previous section, the generalization of
contour lines is more complicated than that of a single line.
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-(a)
Spatial variations within
a certain limitation

The spatial variations
within this limitation can
be completely neglected

©

This area is then
represented by a point
at a smaller scale

Figure 1. The natural principle by Li and Openshaw (1993): A point or a raster cell can be used to represent the spatial variations within a certain

limitation

F

Figure 2. The working principle of Li-Openshaw algorithm

The most difficult part is to make sure that no contours will
intersect each other. This implies three requirements. One
is that the results of generalization should be independent
of starting position. The second is that space must be the
primary concern so then it will guarantee no self-
intersection. The third is that the same set of conditions
should be used for the generalization of all contour lines.
The first two are related to the line generalization
algorithm itself. The first requirement is fulfilled by an
introduction of overlaps between SVOs (Li and Openshaw,
1992). The second has been fulfilled by the virtue of raster
(see Weibel, 1996). Therefore, only the third requirement
will be tackled in this section.

The third requirement seems a little bit ambiguous. It
really means that for the generalization of all lines (a) the
size of SVO used in the algorithm should be kept the
same; (b) the percentage of overlap, if any, should kept
the same; and (c) the mechanism to take a point to
represent the SVO should be consistent. For this
purpose, the simplest implementation of this natural
principle of objective generalization of contour lines is to
lay down a raster grid. The cell size of the grid is the
SVO. The mechanism to take a point as the

representative of the spatial variations within this cell is
the same as that used in the “vector-raster” algorithm
(Li and Openshaw, 1992).

In the generalization of the contour map, some technical
issues also need to be solved. The first one is the smallest
loop (closed contour) to be retained. It is quite obvious
that if the looped line is within a cell, it should be deleted.
However, depending on the position of the starting point
of the grid, the same line may appear on four neighbouring
cells. Therefore, it is still safe to delete closed contour lines
occupying fewer than four cells after generalization. The
second one is the change of contour interval when the map
scale is changed significantly and this topic will be discussed
in the next section.

TECHNIQUE FOR THE GENERALIZATION OF
CONTOUR MAPS

In the previous section, an algorithm used for the
generalization of individual contour lines is presented. This
section discusses how extra care should be taken in the
generalization contouring of a map as a whole.

A Need to Reduce the Number of Contours through a Change of
Contour Interval

When a large-scale map is generalized to a small-scale
map, small variations of contour lines would be removed
while the most important characteristics of contour lines
should be kept. When the scale change is dramatic, then
the spacing between two contour lines (i.e. planimetric
contour interval) will be reduced to such a level that they
will touch each other. As a result, there is a need to
remove some of the contour lines in order to retain the
clarity of the maps. In other words, the vertical interval
of contour lines needs to be changed. A rough guideline
for contour intervals at different scales is summarized in
Table 1.

In the change of contour interval, there are two possible
cases. The first case is to use a multiple of the original
contour interval as a new contour interval. For example,
the original contour interval is 1 m and the new contour
interval becomes 5 m. In this case, the contour lines at the
multiple of 5 metres, i.e. 5 m, 10 m, 15 m, 20 m etc. will
be selected from the original set of contour lines and all
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A contour with thin necks

(©)

Result 2: necks cut and small loops separated

Figure 3. Various possible results for a contour line with thin necks

" CONTOUR INTERVAL

1: 200 000 25t0100m
1: 100 000 10 to 40m
1: 50 000 10to 20m
1:25 000 5to20m
1tol0m

1: 10 000

Table 1. Contour Intervals at Different Map Scales

other contour lines will be discarded. However, sometimes,
there is a need to change from 2 m to 5 m (or from 20 m
to 50m). In this case, a new contour line needs to be
derived from two neighbouring contour lines in the
original set; e.g. a new 5 m contour from original 4 m and
. 6 m contours (Figure 4).
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(b

Result 1: necks cut and small loops lost

@

Result 3: necks exaggerated

Derivation of a New Contour from Two Neighbouring Contours

One way to derive a new contour line from the original two
lines is to derive the skeleton (e.g. Bookstein, 1979; Shapiro et
al., 1980; Su et al., 1998) of the areas formed by the two
original lines. Experience gained from experimental testing
shows that many small (unwanted) branches may be produced
by skeleton algorithms (Su et al., 1998) and therefore,
alternative methods have been sought. The method used in
this project is the triangulation-based algorithm.
The idea behind this algorithm is

(a) to construct a triangular network using the points on
the contour lines;

(b) to interpolate points with the height of new contour;
and

(c) to join these points to form a new contour line.
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Figure 4. A new contour to be derived from two original
neighbouring contours .
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Two contours are triangulated with feature points

In this implementation, the Delaunay triangulation
algorithm is employed. Figure 5b shows an example of
such a triangular network constructed from the -contour
map shown in Figure 5a. The resultant new contour would
be something as shown in Figure 5c. As can be clearly seen,
there is a problem with this network, i.e. there is an
artificially flat area formed by a set of “flat” triangles on the
left side of map. This will be a common. problem if there
are spike-like lines. To avoid this problem, one possible
solution is to add some points along the ridgeline. The
result is shown in Figure 5d. The quality of the resultant
contour will be dependent on the accuracy of those feature
points added. Another solution is to set a constraint for the
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A new contour is derived from (b)

(e) T

A new contour is derived from (d)

Figure 5. A triangulation-based technique for derivation of a2 new contour from two original neighbouring contours
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triangulation ~ no more than two points should be selected
from a contour line in forming a triangle.

EXPERIMENTAL TESTING

In the previous sections, the theoretical background and
algorithmic implementation of the new technique for
contour generalization have been discussed. In this section,
some experimental testing results will be reported.
Experimental testing was carried out in both a relative
and absolute sense. In the former, the generalized results at
smaller scales will be compared with the original lines at a
larger scale. In the ‘latter, a comparison with other
techniques will be made. '

Experimental Testing in an Absolute Sense

In this test, a contour map of an island in Hong Kong has
been digitized. The map scale is 1:10 000, as shown in
Figure 6a. This map is generalized to 1:20 000, 1:50 000
and 1:100 000 scales and the results are shown in Figure
6b, 6c and 6d. As one can see clearly, the resulting contour
lines are very pleasing.

(&

Original contour map at 1:10 000 scale
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In this test, the contour interval is not changed for all
the generalized maps in order to show the capability of
the line generalization algorithm implemented by the
authors, although scale reduction has been as large as ten
times.

To illustrate the robust performance of the algorithm,
the generalized contour maps are enlarged to the original
scale (i.e. 1:10 000) and then superimposed onto the
original contour maps. Figure 7a and 7b show the
superimposition of the generalized maps at 1:100 000
and 1:200 000 onto the original contour map at
1:10 000. It is very clear that the main characteristics of
the contour lines are well kept but small details are
removed. More importantly, there is not self-intersection
of contour lines and cross intersection between contour
lines.

Experimental Testing in a Relative Sense

In the previous section, contour intervals are not changed
although map scale has been reduced by a factor as much
as ten times in order to illustrate the performance of the
algorithm. In this test, the contour interval will be changed

(b)
to 1:20 000

Figure 6. Generalization of contour map to various scales by the new technique

to 1:50 000

to 1:100 000
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Generalised to 1:100 000 scale (i.e. 10x reduction)
superimposed onto the original (1:10 000)

Generalised to 1:200 000 scale (i.e. 20x reduction)
superimposed onto the original (1:10 000)

Figure 7. Generalized contour maps superimposed onto the original contour map

and only those contour lines with a height of the multiples
of the new contour interval will be selected. Since there are
only very few contours in the previous testing area, a new
set of contour data is used for this test.

In this test, the popular Douglas-algorithm (Douglas-
Peucker, 1973) is used for a comparative analysis. Figure
8a is a 1:10 000 scale topographic map, located in
Guangzhou City of Southern China. The map is
generalized to produce a resultant map as shown in
Figure 8b. It is clear that the result is again very
pleasing. However, on the other hand, if the same
criterion is used for the popular algorithm (Douglas-
Peucker algorithm), then the result is shown in Figure
8c. As one can see clearly, there are plenty of
intersections of lines here and the main characteristics of

the original contour set are destroyed. Indeed, such a
result is clearly not acceptable.

CONCLUSIONS

In this paper, existing techniques for contour generalization
have been examined and an integrated technique for the
generalization of contour maps is described. Experimental
tests on the performance of the new technique are also
reported.

This integrated technique consists of an objective line
generalization algorithm (Li-Openshaw algorithm) and an
algorithm for the derivation of a new contour from two
original neighbouring contours. The two are so integrated
that the system will automatically employ either algorithm
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A contour map at 1:10 000 for experimental evaluation

TSI
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(b)
Result obtained from the integrated Result by Douglas-Peuker algorithm
technique developed by the authors

Figure 8. Experimental evaluation of the new technique through a comparison

when a contour line at a particular height is to be generalized, with shape very faithful to the original contours (at a
provided the old and new contour intervals are given. larger scale), because it follows a natural principle.
From a theoretical point of view, the technique described

. . To prove these theoretical conclusions real contour maps
in this paper guarantees p th , real conto p

have been used for testing. One test is carried out to prove

(2) no self-intersection and cross-intersection, because it these conclusions in an absolute sense through a
is a space-primary technique; comparison with the original contour lines and the other in
(b) very smooth resultant contouis, because it considers - a relative sense through a comparison with a popular
aSVO; and algorithm. Experimental results clearly show that the
(c) very coherent relationship between contour lines, quality of the generalized contour maps is extremely good
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by visual inspection in an absolute sense and the new
technique is superior over the popular algorithm. Indeed,
the testing results strongly support the theoretical
conclusions.
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