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Abstract

This paper presents two mathematical models of the accuracy of digital
terrain model (DTM) surfaces which have been linearly constructed from
square gridded data, respectively with and without additional feature specific
data. In these models, the accuracy of DTM surfaces is expressed as a
function of a few parameters, such as slope angle, grid interval or the accu-
racy of raw data, which are familiar to practitioners in photogrammetry and
other mapping related disciplines. These models are in a form similar to the
conventional formulae for contour map accuracy and they are compared with
experimental test results.

INTRODUCTION

IN THE PRACTICE of digital terrain modelling, the accuracy of the resulting digital terrain
model (DTM) surfaces is possibly the most important concern to both DTM producers
and users. Such an accuracy may be either predicted by a mathematical model or"
checked experimentally against a corresponding set of control points which are used as
ground truth. A mathematical model of the accuracy of a DTM surface is beneficial
from both the theoretical and practical points of view, if it is capable of producing
reliable prediction. Moreover, a DTM project can be completed in an economic and
efficient manner only if such a model is available. Unfortunately, existing DTM accu-
racy models have serious limitations with regard to prediction (Balce, 1987; Li, 1990,
1993), although many models have been developed, for example by Makarovi& (1972),
Kubik and Botman (1976), Frederiksen (1980), Tempfli (1980) and Frederiksen et al.
(1986). In addition, Li (1990, 1993) has also pointed out that the parameters used in
these models are either difficult to estimate or are unfamiliar to the mapping commu-
nity. Therefore, the applicability of these models is very limited; this study attempts to
develop a family of new models which is capable of producing reliable results in
practice. -

In this paper, firstly a brief discussion is given of the main factors which affect the
accuracy of DTM surfaces. Error propagation in the modelling process is described and
a general mathematical model is formulated of the accuracy of DTM surfaces linearly
constructed from grid data, both with and without additional feature specific data. A
discussion is presented concerning how the parameters in the general model can be
estimated and finally, predicted accuracies from the mathematical models are compared
with experimental results.

THE MAIN FACTORS AFFECTING DTM ACCURACY

Errors in DTM data points are the accumulated result of errors introduced in all
the operations of the digital terrain modelling process which are propagated from
various sources. Li (1990, 1992) has identified the importance of the following factors:
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(1) the characteristics of the terrain surface;

(2) the methods used for constructing the DTM surface;

(3) the three attributes (accuracy, distribution and density) of the source (or raw)
data; and :

(4) the characteristics of the resulting DTM surface.

The characteristics of the terrain surface define the degree of difficulty in repre-
senting the terrain surface and these features therefore play a significant role in the
accuracy of the resulting DTM surfaces. Slope has been found to be the most important
descriptor of terrain surface and it is widely used in surveying and mapping practice.
Thus, in this study, slope and wavelength (horizontal variation) are used in combination
to describe the surface. The acceptability of using such parameters has been justified by
Li (1993).

A DTM surface can be constructed by two methods: either directly from the
measured data (measured grid data) or indirectly from the grid data (for example a
square grid or triangular grid) derived as a result of so called random-to-grid interpola-
tion at a preprocessing stage. In this study, only measured grid data are considered.

There is no doubt that errors in source data (grid nodes in gridded. data) will be
propagated through the modelling process to the resulting DTM surfaces. Such errors
can be described in terms of variance (0%, and covariance. If the measurement of each
point is considered as being independent, the covariance can be neglected. Indeed,
covariance between photogrammetrically measured data is difficult to estimate and is
usually neglected in practice; it is also ignored in this study since only measured grid
data are considered. ,

The distribution of the source data is another major factor affecting the accuracy
of the resulting DTM surface. This parameter can be described by the pattern, location
and orientation of the data set. In this study, only one particular pattern, the square grid,
is of concern since it is still the most popular grid set. Furthermore, feature specific data
points (such as peaks, pits, points along ridge lines and ravine lines, passes, points along
break lines, and so on) may be added to square gridded data, thus forming so called
composite data. Composite data formed in this manner will also be considered in this
study, but orientation and location are not taken into account.

The density of the source data is perhaps the most important factor (Kubik and
Botman, 1976; Ackermann, 1980; Li, 1992). It can be specified by such parameters as
average points interval, number of points per unit area and the cut frequency (Nyquist
frequency) of the spatial variation represented by the data set. In the case of the square
grid, the grid interval (denoted as d) is an appropriate measure. Even in the case of
composite data, this parameter is still representative and it is therefore used in this
study.

The characteristics of the resulting DTM surface represent a factor determining
the “goodness of fit” of the DTM surface to the terrain surface, thus defining the
accuracy of the DTM surface. It should be noted that DTM surfaces can be either
continuous or discontinuous, and either smooth (using a higher order polynomial) or
non-smooth (using sets of linear surfaces). It has been recognized by many researchers
(for example Peucker (1972)) that linear surfaces are usually the least misleading; these
are continuous surfaces comprising either contiguous bilinear surfaces or triangular
facets or a hybrid of both. This type of surface is selected as a typical example for the
present investigation.

Summarising, in this study the accuracy of a DTM surface will be modelled by
considering (1) the propagation of errors from measured square grid data through linear
modelling using the direct construction method and (2) the accuracy loss due to the
linear representation of the terrain surface.

ERROR PROPAGATION IN LINEAR MODELLING

The linear modelling of square grids means that contiguous bilinear facets are
constructed to represent the terrain surface. The height value of a point at a desired
position is then interpolated from a bilinear surface.
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FIG. 1. Linear interpolation of point I between points A and B.

Error Propagation Along a Profile

When discussing error propagation in linear modelling, error propagation in a
profile should first be considered. Suppose A and B in Fig. 1 are two grid nodes with
an interval of d and point I, between points A and B, is to be interpolated. If the
horizontal distance from 7 to Point A is A, then

d-A A

H,'=TH‘,+'(‘1‘H1, (1)

where H, and H, are the heights of points A and B respectively, and H; is the interpo-
lated height of point 7. If points A and B are measured with an accuracy of G2, in terms
of error variance, then the variance of the errors for point I, 67, which are propagated
purely from two grid nodes, can be expressed as follows:

—_A\2 2
1= (458 oo (& o

Equation (2) is an expression for the accuracy (in terms of error variance) of a particular
point with a specific location along a side of a bilinear surface. However, what is of
interest here is the overall average value for all possible points along the line AB, which
is a representative value for the DTM profile. In this case, the horizontal distances of
these points to point A in Fig. 1, (A in equation (2)) should be considered as a variable
which takes a value from O (at point A) to d (at point B). Therefore, the average value
for the variances of all the points between A and B can be computed as follows:

o135 o (3 s

'=§0',2wd

where G_%nis the overall average value of error variances for all the points along the
whole profile with a grid interval of d, but only with respect to errors propagated from

source data, in other words grid nodes.
For the overall accuracy of the points along a profile, another term concerning
accuracy loss due to the linear representation of the terrain surface should be added,

thus giving the following formula:

2
Ch=05+01=3Cra+ o7 @)

where ¢} denotes the accuracy loss due to the linear representation of terrain surface
in terms of variance (which will be discussed later), 02, is the variance of the errors
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FiG. 2. Bilinear interpolation of point E using four nodes (4, B, C and D).

at grid nodes and 0%, denotes the overall accuracy of the DTM points along the profile
with an interval of d in terms of error variance.

Error Propagation on a Bilinear Surface

In the case of a bilinear surface, the interpolation of a point takes place in two
perpendicular directions. Suppose the four nodes are points A, B, C and D (Fig. 2) and
point E is to be interpolated on the bilinear surface. The interpolation could take place
initially along AB and DC, using equation (1). Thus, point / can be interpolated from
A and B and similarly point J can be interpolated from D and C. The next step of the
interpolation takes place between points  and J as follows:

_d-¢
H.=%5

~where ¢ is the horizontal distance from point E to point , and H., H, and H; are the
height values of points E, I and J respectively.

Thus equation (S5) again expresses linear interpolation along a profile with an
interval of d. Fundamentally, it is identical to equation (1). Therefore, the same devel-
opment as for equation (1) can be made and a formula similar to equation (3) can also
be obtained. However, the accuracy of points I and J in Fig. 2, as for point [ in Fig. 1,
is different from that of points A, B, C and D; the actual accuracy value varies with the
positions of I and J between the two node points and the characteristics of the terrain
surface. Therefore, the average value expressed by equation (3), 6%, should be used as
the representative for points / and J in Fig. 2. Again, there is an accuracy loss (62) due
to the linear representation for profile IJ. Thus, an analogue to equation (4) can be
obtained for the accuracy of the points interpolated from a bilinear surface as follows:

H+ §H,. (5)

Ghy=2 oh + o (6)

By substituting equation (4) into equation (6), the following expression can be
obtained:
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where o,, denotes the average value for the accuracy of the points on a bilinear
surface, 02, is the accuracy of the node and o denotes the accuracy loss due to the
linear representation of terrain profiles, all in terms of error variance.

By comparing equation (4) with equation (7), it can be shown that the coefficient
for 02, in equation (7) is even smaller than that in equation (4). This is because, in
‘bilinear interpolation, more node points have been used than for the profile case (four
points compared with two points). As an example, consider the case where the middle
point on a bilinear surface is interpolated; the average height of the four nodes is the
computed result and the accuracy of this interpolated point is only (1/4)07%... However,
for the middle point of a profile, the interpolated height is the average value of the two
nodes and thus its accuracy is (1/2)02,.. The former accuracy is twice as small as the
latter. ‘

ACCURACY L0ss DUE TO LINEAR REPRESENTATION OF TERRAIN SURFACE

So far, the general form of the accuracy model has been derived and expressed by
equation (7). In this connexion, two important problems need to be solved: (a) the
accuracy of grid nodes (0%,) and (b) the accuracy loss due to linear representation of
terrain surface (02). It is not difficult to estimate a value for o2,. For example, for
photogrammetric data measured in static mode, the approximate value for accuracy is
0-07 H%o to 0-1 H%o (per mille of flying height) for an analytical plotter and 0-1 H%o
to 0-2 H%o for a precision analogue plotter. For data measured in dynamic mode, the
expected result would be 0-3 H%o. Therefore, the only remaining problem is to obtain
a good estimate of ¢?%.

Strategy for Determination of 0%

Terrain shape obviously varies from place to place and it is therefore impossible
to depict its inflexions using an analytical method, especially for small local deviations.
These characteristics can only be handled by using statistical methods.

In the case of the linear modelling of a terrain surface, or should represent the
standard deviation of all the height differences (dh) between the terrain surface and the
resulting linear facets (the DTM surface) which is constructed from error free nodes.
In this case, &k is a random variable. According to statistical theory, for a random
variable (such as dh), regardless of its distribution, its o value (o7 here) gives a strong
indication of its dispersion. Expressed mathematically:

P(l 6k - ul <Ko7) 2f(K) ®)

where 4 is the mean value, K is a constant and f(K) is a function of K with its value
ranging from O to 1. Suppose &k has a normal distribution; if K takes a value of 3, then
f(K) is equal to 99-73 per cent. This means that for normal distribution, with a proba-
bility of 99-73 per cent, 6k will have a value (if sampled) from — 30 + pto 30 + u. This
probability is so large that, in error theory, 30 is regarded as the maximum error and
any error greater than this value is considered as a gross error. Taking an analogue to
the practice of error theory, the following expression seems appropriate:

oy = Ene | )

where o7 is the accuracy loss due to linear representation of terrain profiles, E,.. is the
possible maximum error (which will be discussed later) and K is the same constant as
given in equation (8). The value of K depends on the distribution of k. In the above
example of normal distribution, a value of 3 is considered as an appropriate value.

The next problems are: (1) to estimate E,,; and (2) to obtain an appropriate value
for K.
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FiG. 3. Possible maximum errors of linear representation, due to terrain faults or breaks, with different
locations of grids.

Extreme Errors (E,.) due to Linear Representation

In order to analyze the possible values for extreme values of ok, some possible
outlines of terrain profiles in extreme situations need to be considered. Since only
extreme cases are being examined, some of the analysis may seem unrealistic.

Figs. 3(a) and 3(b) illustrate the maximum possible errors at point C, for the same
terrain feature but with different locations of nodes, due to a fault or other geological
structure giving rise to a steep change in slope. If information giving a full description
of this structure has not been collected, a huge error may result. The value of such an
error, denoted as E, here, varies with the characteristics of the terrain feature itself.
These values can only be measured directly and not estimated analytically.

Figs. 4(a) and 4(b) show the possible positive maximum error at point C for
different locations of nodes when only points which are located on regular grid nodes
are sampled (in other words without feature specific points). As shown in Fig. 4(a), the
possible maximum value of E, arises when point C lies in the middle of the grid and it
can be computed as follows:

E. pax= CB =5 d tanf (10)

E, . TEpresents the possible maximum error in such a case. Similarly, the possible
negative error can also be estimated.

Fig. 5(a) shows the possible errors which may occur for grid data with some
feature specific data for a convex slope. This figure can be justified because it is not
practical to include all convex and concave points, even for the case where pure
selective sampling has been carried out on a stereomodel (in a photogrammetric

(@ (b)
FIG. 4. Possible maximum errors of linear representation using only grid nodes, with different locations of

grids: (a) shows that the maximum value occurs when a grid contains local maxima or minima; (b) shows that
E, varies with the location of grids.
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FIG. 5. Possible maximum errors of linear representations of ordinary terrain slope. (a) is a convex slope;
(b) is exaggerated from (a) for the convenience of analysis; (c) shows that E, varies with location of grids.
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instrument) to simulate data acquisition by ground survey. Fig. 5(b) is exaggerated
from Fig. 5(a) for the convenience of obtaining a numerical estimate. Point C in this
diagram shows an extreme case of convex slope. Line AB is the linearly constructed
profile; angle CAD is the slope angle at point A (denoted as B) and line segment CE is
the possible error at point C. Therefore,

2
CE=CF-=EF=Xtanﬁ—X—%“é. (1)

Fig. 5(c) also shows that the value of E, varies with the location of grid nodes. The
next task is to find the maximum value for CE (see Fig. 5(b)) representing all different
possible locations of point C in terms of horizontal distance from point A. If the first
derivative of CE is considered to be equal to zero, then the location of C where the value
of CE reaches its maximum can be determined as follows:

dCE) _ anp-2X 1208 _ (12)

From equation (12) it can be seen that X = d/2. By substituting this value into equation
(11) and denoting CE as E., then

Eome= CB =7 d tanf (13)

Therefore, it can be deduced that the value of possible extreme errors for the case of
regular grid data only is double that for the case of composite data. The maximum error
due to linear representation is E. ... for composite data, whereas for grid data only, the
situation is more complicated. '

A Practical Consideration Regarding E,.. and &

The three extreme errors identified in the previous section belong to three different
distributions. E, applies to grids taken across faults and break lines; E, relates to grids
taken across peaks, pits, ridges and ravines; and E, is used for ordinary terrain features
and therefore for all the remaining grids. Suppose the proportions of grids which may -
contain E,, E, and E, are P(c), P(r) and P(b), then

P(c)+P(r)+P(b)=1. (14)

For composite data, P(r) and P(b) are zero. It is only necessary to estimate P(r) and
P(b) for regular grids. If no faults such as Fig. 3 occur, then P(b) is zero. Otherwise,
P(b) can be estimated according to the height over the length and width of the faults
or breaks.

Similarly, the estimation of P(r) is not an easy task. For a small area, there is no
better method than simply counting the number of grid cells across the ridge and ravine
* lines and then dividing by the number of total grids. For a large area, some alternatives
may be used. The value of P(r) is directly related to the wavelength of terrain variation
(Fig. 6). However, the planimetric shape of a hill (expressed by its contours) could be
very different from place to place. Even for the same hill, the wavelength could be
different if the profiles are taken along different directions. Therefore, even a rough
estimate, such as an average value, could be valuable. The value of the average wave-
length can be estimated as follows:

A =2 H cotx (15)

where H is the average relative height, a is the average slope angle and A is the average
wavelength, all taken over the entire area to be modelled (Fig. 6). In practice, the
average value of local relief (half of the maximum minus the minimum heights) can be
used to represent H, such that

A= (Hyge — Hya) COLOL ' (16)
Once the estimation of A has been made, the value of P(r) can be estimated. Both the
top and the bottom of a spatial variation will occur over a single wavelength in one

profile direction. Therefore, for a grid which has two profile directions perpendicular
to each other, the occurrence frequency of the E, values over a grid is as follows:
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FiG. 6. Approximate estimation of wavelength, A, where H is the average of the height variations.

p(ry =22 (172)

where A is the average wavelength, d is the grid interval and P(r) is the occurrence
frequency of E,. An idealized diagram such as Fig. 7 may help in understanding the
estimation of P(r). In this example, the total number of grid squares is (1-5A/d) x
(1-5A/d). Suppose all the profiles along both directions are identical to the ones shown
in Fig. 7, then the total number of grid squares which may contain E, is, as marked in
Fig. 7, approximately equal to 6(1-54/d). Thus P(r) is 4d/A, which is expressed by

— 152

XSt

1
Z

N =1

FIG. 7. Approximate estimation of P(r), which represents the proportions of grids containing local
maxima and minima. :
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equation (17a). However, a more important consideration is for the area with size A X A.
Fig. 7 shows that, in this unit area, P(r) = 4d/A = d(4A/A?). Here 4 is the perimeter and
A? is the area. This leads the author to suspect that the following expression for P(r) is
more general and more appropriate:

perimeter of lowest contour
area enclosed by lowest contour *

P(r)=d (17b)

Equation (17b) could be very useful for the estimation of P(r) from existing contours

which from the map appear to be of any irregular shape.
Therefore, for the DTM linearly constructed from grid data only, the value of o7

can be estimated as follows:

EP(") Er,nmx+P(c) Ec,n:ax+P(b) Eb.max

Or K (18)

It may be argued that such an averaging operation is not justified from a statistical point
of view, since E,, E, and E, belong to three different distributions. However, in DTM
practice, it is never possible to distinguish between these three types of errors and
estimates are always made from a sample which contains all of them. Therefore,
equation (18) is an appropriate representation of DTM practice.

In practical terms, E, rarely occurs and even if it does occur, it is normally
sampled. Thus, it is acceptable to neglect E, in equation (18), giving:

P(r)E, par + P(C) E, pnax
Or= e 2
(19)
-— P!r),E" max+ (1 - P(r)) Ec, max
= X .

Finally it is necessary to determine an appropriate value for K.

Estimating the Value of K

If the distribution of the errors due to linear representation was known, then it
would be easy to obtain a good estimate for K. However, the problem is that such a
distribution of errors has still not been established. In some cases, it seems to follow a
normal distribution while in other cases this is not true (Torlegird et al., 1986; Li,
1992). The usual assumption of normal distribution in error theory is not necessarily
applicable and therefore a value of 3 is not necessarily an appropriate value for K.

From a theoretical point of view, according to Chebyshev’s law, the majority of
errors are massed with a range from —406+ (1 to 40+ u. The probability is at least
94 per cent regardless of distribution. In the case of terrain modelling, which is close
to a normal distribution, such a probability is therefore much greater. Thus a value of
four could be taken as an approximate value for K.

Results obtained from experimental tests on the accuracy of DTM surfaces carried
out by the author indicate that a value of four could be the appropriate value for X in
these circumstances. The occurrence frequency for DTM errors greater than 4ois from
0-25 per cent to 0-30 per cent. These results were obtained from 74 tests (using 74 data
sets), each with more than 1500 errors (taken as residuals at check points), which were
obtained from three different test areas. A residual error is, of course, slightly different
from o since the former is also affected by both the errors on grid nodes and the errors
at check points. However, in these tests, the check points were observed with much
greater accuracy so that their influence in comparison with oris very small. Thus these
results must represent a true picture. Although such a sample cannot be considered as
being very large, and the examples are not very comprehensive, the investigation gives
some insight into the error distribution. Therefore, from both a theoretical and a prac-
tical point of view, a value of 4 seems valid for K in equation (8).
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MATHEMATICAL EXPRESSIONS OF DTM ACCURACY MODELS

It has been shown that accuracy loss due to linear representation for a digital
- terrain model linearly constructed from measured grid data only can be written as
follows: -

or, =252 (1= p(r)) + o pyr)
=280 (1 _p(r)) + 220% pyy)
=d;aK““(1 +P(r))
k(4

Moreover for a DTM constructed from composite data, the accuracy loss formula is as

follows:
E; mex _dtana

Ore="K ~ 4K - @D

Substituting equation (21) and equation (20) into equation (7), the accuracy of digital
terrain models linearly constructed respectively from composite data and grid data only
and is as follows:

Clure = g O+ IS%@ (d tanc)? (22a)
: 2
Gl = g- o2, + 1851’(’5 ( 1+P(r) ) (d tan)® (22b)

where 6.y and 03, denote the accuracies of digital terrain models linearly con-
structed from composite data and from grid data only (both in terms of error variance),
0. is the variance of errors at measured grid nodes, K is a constant (approximately
equal to 4 depending on the characteristics of the terrain surface), o is the average slope
angle of the area and P(r) is the proportion of grids which may contain E, (which is
expressed by equation (17)).

At this point the derivations of the formulae have all been completed. However the
discussion can be extended to provide an approximation of equation (22) as follows:

Osurfrc = % Orod + 74%,;- (d tana) (23a)
gy = % G + V&% (1 +P(r) ) (d tana). (23b)

These equations represent an analogue to the Koppe formulae which are widely used
for specifying map accuracy in middle European countries. Equations (23) prove to be
a very good approximation of equations (22) in the case where grid intervals are
relatively small and equations (23) are more convenient to use in practice.

EVALUATIONS OF ACCURACY MODELS

Once the mathematical models of the accuracy of DTM surfaces have been estab-
lished, their effectiveness needs to be judged. In this study, three sets of experimental
results are used for this purpose. Details of how the tests were designed and carried out,
the results that have been obtained and an analysis (both descriptive and regression) of
these results have been presented in another paper (Li, 1992). It is important to note
here that the test results were obtained using a triangulation based package. In other
words, the constructed DTM surface is comprised of triangular facets, not contiguous
bilinear surfaces. However the mathematical models described in this paper are for
bilinear surfaces and it may therefore be argued that such an evaluation is not compre-
hensive. Nonetheless, the results definitely offer a suggestion of the aptness of these
mathematical models. :

The test areas selected were Uppland (Sweden), Sohnstetten (Germany) and
Spitze (Germany), which were those used for DTM tests carried out by a commission
of the International Society for Photogrammetry and Remote Sensing (ISPRS)
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(Torlegard et al., 1986). The mean (average) slope angles are estimated as being 6°, 15°
and 7° from photogrammetrically measured contours, for Uppland, Sohnstetten and
Spitze respectively. The accuracies of measured data in terms of standard deviation for
these areas are estimated as 0-67m, 0-16m and 0-08m, respectively. The wavelengths
for these three areas are estimated as being 470m (by equation (22c)) for Uppland,
214m (the width of the area checked) for Sohnstetten and 300m (the width of the area
checked) for Spitze. Also in the vicinity of Spitze, there are two steep slopes along both
sides of roads. The values of these breaklines vary from 3m to 0-5m, with an average
of 1-25m, thus E, = 1-25m.

Using these estimates for equations (22a) and (22b), theoretical predictions can
then be made. A comparison of these predictions with the results obtained from practi-
cal tests is shown in Table I. It can clearly be seen from this table that some areas had
over-estimated values for predicted accuracy, while others were underestimated. How-
ever, in general, the discrepancies are within expectation since it has been found that
the accuracies for the two grids with the same interval, but with an offset of the origins
or a different orientation could also be quite different. For example, for the Sohnstetten
area, the largest difference of standard deviations for two 56-56m grids is 0-26m. Thus
a value of 0-18m for the largest difference between the predicted value and tested value
for the 56-56m grids is not surprising.

TABLE I. Comparison of predicted accuracy with test results.

Grid data Composite data
Grid -
interval  Predicted  Tested Difference Predicted  Tested  Difference
Test areas (m) (m) (m) (m) (m) (m) (m)

Uppland 28.28 0-54 0-63 -0-09 0-51 0-59 - 0-08

40 0-64 0-76 -013 0-56 0-66 -0-10

56-56 0-85 0-93 -0-08 0-66 0-70 -0-04

80 1.24 118 0-06 0-81 0-80 0-01
Sohnstetten 20 0-63 0-56 0-07 0-45 0-43 002

28-28 097 0-87 0-10 0-63 0-56 0-07

40 1.56 1.45 0-11 0-87 0-78 0-09

56-56 2.58 2-40 0-18 1.23 1.08 0-15
Spitze 10 017 0-21 -0-04 0-12 0-16 -~ 0-04

14-14 0-25 0-28 -0-03 0-15 0-17 -0:02

20 0-38 0-35 0-03 020 0-18 0-02

Predict denotes the predicted accuracy values; Tested denotes the experimental accuracy values; and
Difference denotes the differences between predicted and tested values, all in terms of ©.

From the experimental evaluation carried out above, it can be seen that these two
accuracy models can produce reasonable prediction. It means that, in practice, they are
good approximations. For theoretical evaluation, Meyer (1985) suggests that the fol-
lowing can be used as standards: (a) accuracy; (b) descriptive realism; (c) precision;
(d) robustness; (e) generality; and (f) fruitfulness. To these six, Li (1990) added another
criterion: (g) simplicity. Using these seven criteria, the models presented in this paper
can be judged from a theoretical standpoint.

CONCLUDING REMARKS

In this paper, two mathematical models have been presented of the accuracy of a
DTM surface, both linearly constructed from grid data only and from grid data with
additional feature specific data. The surface accuracy can be simply expressed by a very
general formula as follows:

Oy =K Ol + Ky (I + Ksd)? (d tanar)? | 24)
where K| is a constant, approximately equal to 4/9, K, is also a constant (approximately
equal to 5/768) depending on the characteristics of the terrain surface, and Kj is also a

constant which is equal to zero for composite data and for grid data only is approxi-
mately equal to 4/A or (perimeter/area) of the lowest contour, d being the grid interval

and « the average slope.
The main advantage of these models is that they offer a simple mathematical
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expression for surface accuracy, which is an analogue of a conventional map accuracy
model and is thus very convenient for practical use, in addition to reliability of predic-
tion. These models may lead to the development of mathematical models of the
accuracy of contours which are produced from DTMs, or even models of the accuracy
of other DTM products.

It needs to be emphasized here that it is impossible for an accuracy model to
produce absolutely accurate predictions and the models described in this paper are not
exceptions. Experience gained by the author from experimental work seem to show that
a value of 15 per cent for the difference between standard deviations obtained from two
different grids with the same grid interval (but possibly with an offset or with different
orientation) is well within expectation and 20 per cent is even possible in some cases.
Such a value might also be applied in case of model evaluation.

‘It should also be noted here that the models described in this paper are subject to
many limitations. For example, the models have the restrictions that they only consider
(a) square grid data (with and without additional feature specific data); (b) a linear
surface and (c) the direct construction method. Further limitations include: (d) only a
very rough estimate for the value of K has been given; (e) the orientation and location
of grids are not considered; (f) the models are not applicable in the case of very large
grid interval (for example d 2 4).

The two models appear to be promising. However, due to the limitations men-
tioned above, a systematic evaluation would be desirable to check their applicability in
practice. Especially, it would be beneficial to make some modification to K and P(r)
in order to fit the characteristics of a particular type of terrain surface. Further work in
this respect may help the OEEPE to set a DTM standard, which is the objective of an
OEEPE project.
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Résumé

~'On présente dans cet article deux modéles mathématiques sur la préci-
sion des modéles numériques du terrain (MNT) que l'on a établis
linéairement a partir de données réparties selon une grille carrée, l’un, en
tenant compte de données auxiliaires spécifiques sur la surface, I’autre sans.
On exprime, dans ces modéles, la précision sur la surface du MNT par
une fonction de quelques paramétres tels que I’angle de pente, le pas de la
grille ou la précision des données initiales, ce qui est tout a fait familier aux
practiciens de la photogrammétrie et des autres disciplines liées a la car-
tographie. La forme de ces modéles est analogue a celle des formules
habituelles concernant la précision des courbes de niveau des cartes; enfin
on évalue ces modéles sur les résultats d’essais expérimentaux.

Zusammenfassung

Im Artikel werden 2 mathematische Modelle fiir die Genauigkeit von
Oberflichen digitaler Geldndemodelle (DTM) dargestellt, die linear aus
quadratischen Rasterdaten, und zwar mit und ohne zusdtzliche Geldndedaten
erzeugt wurden. Bei diesen Modellen wird die Genauigkeit der DTM-
Oberflichen als Funktion weniger Parameter ausgedriickt, wie z.B. der
Geliindeneigung, dem Rasterabstand oder der Genauigkeit der Rohdaten, die
den Praktikern der Photogrammetrie und weiteren mit der Kartenherstellung
verbundenen Disziplinen vertraut sind. Diese Modelle dhneln in der Form
der konventionellen Formel fiir die Genauigkeit von Hohenlinienkarten, und
sie werden mit experimentellen Versuchsergebnissen verglichen.



